Second Semester M. Tech Degree Examination in Electronics and Communication Engineering Stream: Telecommunication Engineering (2013 Scheme) TTE 2002 SECURE COMMUNICATION MODEL QUESTION PAPER

Time: 3 hours
Max. Marks: 60

Instructions: Answer any 2 questions from each module (Each Carries 10 Marks)

Module I

1. State and prove Fermat's little theorem.
2. Let p denote a prime, then prove that $x^{2} \equiv-1$ has solutions if and only if $p=2$ or $p=1(\bmod$ 4).
3. Solve the congruences (i) $x^{3}+2 x-3 \equiv 0(\bmod 9)(i i) x^{3}+2 x-3 \equiv 0(\bmod 5)$.

Module II

4. Assume that two users want to establish a common secretkey over an insecure channel by using Diffie-Hellman key exchange protocol.The private key for user A is 11 and for user B is 14 . Consider a commonlyknown prime 17.
(i)Find the smallest primitive element for $\mathrm{p}=17$.
(ii) Obtain the common key by using the primitive element found above.
5. Explain Data Encryption Standard.
6. Show that any sequence of positive integers $\left\{v_{i}\right\}$ with $v_{i+1} \geq 2 v_{i}$ for all i is super increasing.

Module III

7. Find all bases b for which 15 is a pseudoprime.
8. Prove that 561 is the smallest Carmichael number.
9. Let $\mathrm{n}=4633$. Find the smallest factor base B such that the squares of 68,69 and 96 are B numbers and then factor 4633.
