Model Question Paper
 Second Semester M. Tech Degree Examination in
 Electronics and Communication Engineering
 Stream: Telecommunication Engineering (2013 Scheme)
 TTE 2002: Secure Communication

Time : 3 hours
Max. Marks : 60

Instructions: Answer any 2 questions from each module (Each Carries 10 Marks)

Module I

1. (a) Explain in detail about the characteristics of different complexity classes.
2. (a) State Fermat's theorem. Using this theorem find
i) $60^{-1} \mathrm{mod} 101$
ii) $3^{12} \bmod 11$
(b) Explain Euler's theorem and find the values of
i) $20^{62} \bmod 77$
ii) $71^{-1} \bmod 100$
3. (a)Discuss about quadratic residues and solve $3 y^{2}+5 y+9 \equiv 0(\bmod 11)$
(b) Solve the linear Diophantine equation $21 x+14 y=35$

Module II

4. (a) Generate a PN sequence using a 5 stage LFSR. Check for randomness. Discuss about the use of random numbers in cryptography.
(b) Explain about message digest scheme MD5.
5. (a) What are the requirements of a hash function? Explain in detail about hash functions. (6)
(b) In a public key system using RSA, assume that an intruder intercept the cipher text $\mathrm{c}=10$ sent to a user whose public key is $\mathrm{e}=5, \mathrm{n}=35$. What is the plain text m ?
6. Explain how encryption and decryption are performed in AES standard. Also explain how the key expansion is performed in AES.

Module III

7. Explain Baby step- Giant step algorithm for computing discrete logarithm. Find the value of x where $5^{x}=9$ in $Z^{*}{ }_{14}$
8. Discuss about different primality tests in cryptanalysis.
9. (a) Explain different factorization methods.
(b) Does the number 561 pass the Fermat's test?
