Roll No	
Name:	

Second Semester M Tech, Model Paper Branch: Electronics & Communication Engineering Stream: Telecommunication Engineering & Signal Processing

TSC 2001 ESTIMATION AND DETECTION THEORY

Time: 3 HoursMax. Marks: 60Instructions:Answer any TWO questions from each Part
All questions carry equal marks

PART - I

1	Discuss	[2]
	a) The generalized fixen nood ratio test.	[2]
	b) Neyman Pearson Criteria.	[2]
	c) Unbiased Estimate.	[2]
	d) Unbiased Minimum Variance.	[2]
	e) Consistent Estimate.	[2]
2	a)A random variable <i>X</i> has the distribution $N(0, 1)$. Find the probability that $X > 3$.	[3]
	b) Consider the random process defined by $X(t) = A\cos(\omega_0 t + \Theta)$, where A and ω_0 are constants, and Θ is a random variable uniformly distributed over the interval $(0, 2\pi)$. Let be the random process defined as $Y(t) = X^2(t)$.	t Y(t)
	(a) Find the autocorrelation function of $Y(t)$.	[4]
	(b) Is $Y(t)$ a stationary process?	[3]
3	a) Define maximum likelihood estimator of the parameter θ .	[2]
	b) State the invariance property	[3]
	c) Let Y be a Gaussian random variable with mean zero and variance σ^2 . (i) Obtain the ML estimates of σ and σ^2	
	(ii) Are the estimates efficient?	[5]

PART - II

4 a)Discuss Bayes Estimation. List out the three cases of costs which are a function of the error. [5]

b) Show that the minimum mean-square estimate $\hat{\theta}_{ms}$ represents the conditional mean of θ given **Y**.

[5]

5. A binary communication system transmits polar signals of values–Aand+ A under hypotheses H0 and H1, respectively. The received signal iscorrupted by an additive Gaussian noise with zero mean and variance σ^2 .

(a) Determine the optimum decision rule for minimum probability of error.	[5]
(b) Study the decision rule for $P_1 = P_0 / 3$, $P_0 = P_1$, and $P_1 = 5P_0 / 3$.	[5]

6. a) Discuss the minimax criterion. [2]
b) Derive the minimax equation in terms of cost and probabilities. [3]
c) Draw a graph of Risk in terms of probability P₁. [2]
d) If the cost of the correct decision is Zero and the wrong Decision is 1 then calculate the minimax cost and the average probability of error. [3]

7.	a) Relationship Between Kalman and Wiener Filters.	[2]
	b) State the important properties of the new information <i>measure</i> in the observation	variable
	Y(n), (innovation $V(n)$ for the random variables.)	[3]
	c) Show that the optimum discrete realizable filter is a cascade of two filters,	[5]
8.	a) Obtain an expression for the sequential likelihood ratio test.	[4]
	b) Determine the thresholds η_0 and η_1 in terms of P_F , the probability of falsealarm,	and P_M ,
	the probability of a miss.	[6]
9.	a) Define Non parametric detection.	[2]
	b) Discuss Sign test and Rank test in Non parametric detection.	[8]