TAE 2005

ROBOT DYNAMICS & CONTROL

Answer any two questions from each module

Module1

1. a) Explain the term robotics and different elements of a robot in detail.		
b) Explain the different types of sensors used in robots.	(5)	
2. Explain briefly the different actuating mechanisms used in robotics .	(10)	
3. Explain the representation of a rigid body in space and derive the transformation		
matrices for a)pure translation b)pure rotation c)combined transformation	(10)	

matrices for a)pure translation b)pure rotation c)combined transformation

Module 2

4. Explain forward and inverse kinematics also Derive the forward and inverse	
kinematics for a 2-joint elbow manipulator.	(10)
5. a) a point p [7 3 2] is attached to a frame (n,o,a) & is subjected to the following transfer Find the coordinates of the point p relative to the reference frame	ormations. (5)
1) Rotation of 90 degrees about z- axis.	
2) Followed by a rotation of 90 degrees about y-axis.	

3) Followed by a translation of [4 -3 7].

- b) Explain the Denavit-Hartenberg representation of robot kinematics (5)
- 6. a) Derive and Explain Jacobian matrix for differential motions. (5)
 - b) 1. Calculate the linear & angular differential motions of the robot's hand (3)

for the given joint differential motions

$$\mathbf{J} = \begin{bmatrix} 2 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad D_{\theta} = \begin{bmatrix} 0 \\ 0.1 \\ -0.1 \\ 0 \\ 0 \\ 0.2 \end{bmatrix}$$

2. Find the angle of rotation and orientation about the axis for given matrices. (2)

0.5	0	0.866]	[0.707	-0.707	0]
0	1	0	0.707	0.707	0
-0.866	0	0.5	LΟ	0	1

Module 3

7. Explain joint space and Cartesian space trajectory planning in detail.	(10)
8. Give the feedback control systems used to control manipulators also Derive the equation for	PID
control of a single link manipulator.	(10)
9. Explain wheeled motor robots and obtain kinematics for single wheeled motor robots with	(10)
required diagrams & equations.	