Fourth Semester B.Tech (Civil Engg.) Degree Examination

(2013 Scheme)

STRUCTURAL ANALYSIS - I

Time: 3 Hrs.
Max. Marks: 100

PART A

Answer ALL questions (5×4 marks $=20$ marks)

1) Differentiate between statically determinate and indeterminate structures with examples.
2) Derive the differential equation for the deflection curve of a beam.
3) State and explain the principle of virtual work for deformable bodies.
4) Derive the expression for Euler buckling load for a prismatic column one end hinged and the other end fixed.
5) Define equivalent uniformly distributed loads. A 5 m long UDL, of intensity $30 \mathrm{kN} / \mathrm{m}$ rolls over a girder of span 15 m . Find the equivalent uniformly distributed load.

PART B

Answer any ONE full question from each module ($4 \times 20=80$ marks)

MODULE 1

6) Determine the magnitude of maximum deflection for the beam of 5 m span shown in Fig.1. $\mathrm{E}=200$ GPa and $\mathrm{I}=7.5 \times 10^{7} \mathrm{~mm}^{4}$

(20 marks)
Fig. 1

OR

7) Using conjugate beam method, determine the slope and deflection at the free end of the cantilever beam loaded with UDL as shown in Fig. 2.

Fig. 2

MODULE 2

8) Determine the horizontal and vertical deflection at the free end E of the frame shown in Fig. 3 using Castigliano's theorem.

Fig. 3
(20 marks)

OR
9) Determine the vertical and horizontal displacement of joint C of the pin jointed frame shown in Fig. 4 by virtual work method. $\mathrm{E}=200 \mathrm{MPa}$, cross sectional area of each member is $200 \mathrm{~mm}^{2}$.

Fig. 4
(20 marks)

MODULE 3

10) Determine the normal thrust, radial shear and bending moment at 6 m from the left support for the parabolic arch of span 30 m shown in Fig. 5.

Fig. 5
OR
11) a) What are the limitations of Euler's formula?
b) Determine the cross-section of a cast iron hollow cylindrical column 3 m long with both ends fixed subjected to an axial load of 800 kN . The ratio of internal to external diameter is $5 / 8$. Assume factor of safety as 4.Take $\mathrm{f}_{\mathrm{c}}=550 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{C}=1 / 1600$.
(15 marks)

MODULE 4

12) Two point loads 100 kN and 50 kN spaced 3 m apart cross a girder of 10 m span, the smaller load leading from left to right. Construct the maximum SF and BM diagrams, stating the position and magnitude of maximum deflection.
(20 marks)

OR
13) Fig. 6 shows the plan of a three member structure, hinged to a common point D which is at 4 m above ground level. A vertical downward load of 15 kN and a horizontal load of 10 kN acting towards the left are applied at D. Find the forces in the pin jointed space frame.

Fig. 6

