University of Kerala
First degree programme in Mathematics
Fifth Semester B.Sc. Degree model questions
COMPLEX ANALYSIS
MM 1542
(2014 Admissions onwards)

Time: 3 Hours
Max. Marks: 80

All the first 10 questions are compulsory. They carry 1 mark each.

1. Express \(\frac{(4-i)(3+i)}{(2-i)} \) in the form \(a + ib \)

2. Find the square root of \(4i \)

3. Show that \(|z|^2 = z \bar{z} \).

4. Find the radius of convergence of the series \(\sum_{n=0}^{\infty} z^n \).

5. If \(z = x + iy \), find \(|e^z| \)

7. Express \(3 + 2i \) in polar form.

8. Write an example for a Cauchy sequence in Complex plane.

9. Let \(\{z : z = \bar{z} \} \). What is it geometrically means?

10. Write the power series representation of \(e^z \).

(10x1=10 Marks)
Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

11. Find the sum of complex numbers $3 + 2i$ and $1 + i$ geometrically.

12. Find the cube roots of unity.

13. Prove that $\{z_n\}$ converges if and only if $\{z_n\}$ is a Cauchy Sequence.

14. Using Cauchy Riemann equation, verify $-x^2 + y^2 - 2xy i$ is analytic.

15. Find the radius of convergence of. Is the series $\sum (1/2)^n$ converge or diverge. Justify your answer.

16. Prove that f is constant if $f = u + iv$ is analytic in a region D and u is constant.

17. Let $f(z) = \frac{1}{z}$ and $C: z(t) = R \cos t + i R \sin t, 0 \leq t \leq 2\pi, R \neq 0$. Then find $\int_C f(z)dz$.

18. Evaluate $\int_C f(z)dz$ where $f(z) = x^2 + y^2$ and C is $z(t) = t^2 + i t^2$

$0 \leq t \leq 1$.

19. Solve $x^3 + 4x + 2$ by Cubic Method.

20. Is the polynomial $x^2 + y^2 - 2xy i$ is analytic. Justify your answer.

21. Suppose C is given by $z(t), a \leq t \leq b$. Then prove that

$$\int_C f = \int_C f.$$

22. Let $f(z) = |z|^2$. Is f differentiable at $z = 0$. Justify.

(8x2=16 Marks)

Answer any 6 questions from the questions 23 to 31. These questions carry 4 marks each.

23. Geometrically represent the following sets.
24. Prove that \(|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2) \) and interpret the Result geometrically.

25. Prove that if a polynomial \(P(x, y) \) is analytic if and only if \(P_x = i P_y \).

26. State and prove uniqueness theorem for power series.

27. Suppose \(f \) is derivative of an analytic function \(F \) - that is \(f(z) = F'(z) \)

Where \(F \) is analytic on the smooth curve \(C \).

Then \(\int_C f(z)dz = F(z(b)) - F(z(a)) \).

28. a) Evaluate \(\int_C (z - i)dz \) where \(c \) is the parabolic segment \(z(t) = t + i t^2 \)

\[-1 \leq t \leq 1.\]

b) Also find the above integral along the straight line \(-1 + i \) to \(1 + i \).

29. Let \(C \) be a smooth curve; let \(f \) and \(g \) be continuous function on \(C \); and

Let \(\alpha \) be any complex number. Then

a) \(\int_C (f(z) + g(z))dz = \int_C (f(z))dz + \int_C (g(z))dz \).

b) \(\int_C \alpha f(z)dz = \alpha \int_C f(z) \).

30. Verify the following identities

a) \(\sin 2z = 2 \sin z \cos z \).

b) \(\sin^2z + \cos^2z = 1.\)

31. Is the following polynomials are analytic. Verify

a) \(P(x, y) = x^3 - 3xy^2 - x + i (3x^2 - y^3 - y) \)

b) \(P(x, y) = 2xy + i (y^2 - x^2). \) (6x4=24 marks)
Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

32. a) Suppose that \(f(z) = \sum_{n=0}^{\infty} c_n z^n \) converges for \(|z| < R \). Then \(f'(z) \) exists and equals \(\sum_{n=0}^{\infty} n c_n z^{n-1} \) throughout \(|z| < R \).

b) The power series are infinitely differentiable within their domain of convergence.

33. a) If \(f = u + iv \) is differentiable at \(z \), \(f_x \) and \(f_y \) exists there and satisfy the Cauchy Riemann equation \(f_y = i f_x \).

b) Is the converse of the above statement is true. Justify your answer.

c) Show that \(f(z) = \text{Re} z \) is nowhere differentiable.

34. a) Suppose \(f \) is entire and \(\Gamma \) is the boundary of a rectangle \(R \).

 Then \(\int_{\Gamma} f(z) \, dz = 0 \).

 b) State and prove integral theorem.

35. a) Suppose \(G(t) \) is a continuous complex-valued function of \(t \). Then

 \[\int_{a}^{b} G(t) \, dt \ll \int_{a}^{b} |G(t)| \, dt. \]

 b) Suppose that \(C \) is a smooth curve of length \(L \), that \(f \) is continuous on \(C \), and that \(f \ll M \) throughout \(C \). Then \(\int_{C} f(z) \ll ML \).

\((15 \times 2 = 30) \)