UNIVERSITY OF KERALA

MODEL QUESTION PAPER

FIRST DEGREE PROGRAMME UNDER CBCSS

SEMESTER V- MATHEMATICS

2014 admission

Abstract Algebra 1

MM 1545

Part A

All the first 10 questions are compulsory. They carry 1 mark each

- 1) If * is any binary operation on a set S, then a * a = a for all $a \in S$. Write true or false
- 2) Is the binary operation * defined on Q by a * b = ab/2 associative
- 3) When we say that two algebraic binary structures to be isomorphic
- 4) What are the generators of Z_4
- 5) Define a cyclic group
- 6) Every abelian group is cyclic .Write true or false
- 7) Compute (1,4,5)(7,8)(2,5,7)
- 8) Every group of prime order is abelian. Write true or false
- 9) Determine whether the binary operation defined on Z by a * b = ab gives a group structure of Z
- 10) Define the terms cycle and length of a cycle

Part B

Answer any eight questions from this section .Each question carries two marks

- 11) Show that (2Z,+) is isomorphic to (Z, +)
- 12) Prove that a binary structure (S.*) has at most one identity element
- 13) Show that the left and right cancellation law holds in a group
- 14) Find the order of the cyclic subgroup of $\,{f Z}_4$ generated by 3
- 15) Show that every cyclic group is abelian
- 16) Find the number of elements in the cyclic subgroup of Z_{30} generated by 25

17) Compute
$$\tau^2 \sigma$$
 where $\sigma = \begin{pmatrix} 1, 2, 3, 4, 5, 6 \\ 3, 1, 4, 5, 6, 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1, 2, 3, 4, 5, 6 \\ 2, 4, 1, 3, 6, 5 \end{pmatrix}$

18) Find the number of elements in the set $\{\sigma \in S_4 : \sigma(3) = 3\}$

19) Find the orbits of the permutation $\begin{pmatrix} 1, 2, 3, 4, 5, 6, 7, 8 \\ 3, 8, 6, 7, 4, 1, 5, 2 \end{pmatrix}$ in S_8

- 20) Find the partition of Z_6 into cosets of the subgroup H = {0, 3 }
- 21) Find all cosets of the subgroup $\langle 4
 angle$ of $Z_{\scriptscriptstyle 12}$
- 22) Find the index of $\langle 3 \rangle$ in the group Z_{24}

Part C

Answer any six questions . Each question carries 4 marks

- 23) Show that $Q^{^+}$ with * defined by a*b = ab/2 is a group
- 24) Prove that the identity element and inverse of each element in a group are unique
- 25) Describe all the elements in the cyclic subgroup of GL(2,R) generated by $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$
- 26) Prove that the subgroup of a cyclic group is cyclic
- 27) Prove that every permutation $\,\sigma\,$ of a finite set is a product of disjoint cycles
- 28) Let σ = (1,2,5,4)(2,3) in S_5 .Find the index of $\langle \sigma \rangle$ in S_5
- 29) Exhibit the left cosets and the right cosets of the subgroup 3Z of Z

30) Find the order of (8,4,10) in the group $Z_{12} \times Z_{60} \times Z_{24}$

31) Express $\begin{pmatrix} 1,2,3,4,5,6,7,8\\ 8,2,6,3,7,4,5,1 \end{pmatrix}$ as a product of disjoint cycles and as a product of transpositions

Part D

Answer any two questions from this part .Each question carries 15 marks

- 32) a) Let G be a group and $a \in G$. Show that $H = \{ a^n : n \in Z \}$ is a subgroup of G and is the smallest subgroup of G that contains a
 - b) Write the order of the cyclic subgroup of U_5 generated by cos4 π /5 +i sin4 π /5
 - c) Write the group $\,{f Z}_{\,_6}\,$ of 6 elements. Compute the subgroups $\langle 0
 angle$ and $\langle 1
 angle$

33) a) Let G be a cyclic group with generator a . If the order of G is infinite prove that G is isomorphic to $\langle Z, + \rangle$. If G has finite order n prove that G is isomorphic to $\langle Z_n, + \rangle$

- b) Find the number elements in the cyclic subgroup of $\, Z_{_{42}}$ generated by 30
- 34) a) State and prove Cayley's theorem.

b)Write the group $m{S}_{_3}$. Find the cyclic subgroups $\langlem{
ho}_{_1}
angle$, $\langlem{
ho}_{_2}
angle$, $\langlem{\mu}_{_1}
angle$ of $m{S}_{_3}$

35) a) Let H be a subgroup of a finite group G. Prove that order of H is a divisor of order of G

b) Prove that every group of prime order is cyclic

c) Let A be a nonempty set and S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication.