UNIVERSITY OF KERALA
 Model Question Paper
 First Degree Programme
 Semester VI Core Course
 MM: 1641 Real Analysis II

Time: 3 Hours

Maximum Marks: 80

Section I

All the first 10 questions are compulsory. Each carries 1 mark.

1. Is signum function continuous at $x=0$?
2. Determine the points of continuity of the function $f(x)=x[x]$, where [] denote the greatest integer function.
3. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is discontinuous at every point of $[0,1]$ but $|f|$ is continuous on $[0,1]$.
4. Give an example of a function which is monotone but not continuous.
5. Find $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{\sqrt{x}}$.
6. Is the function $f(x)=|x|+|x+1|$ from $\mathbb{R} \rightarrow \mathbb{R}$ differentiable?
7. Find the points of relative extreme for $f(x)=\left|x^{2}-1\right|$ of $-4 \leq x \leq 4$.
8. State Taylor's theorem.
9. Give an example of a function which is not Riemann integrable.
10. Define a null set.

Section II

Answer any 8 questions from this section.

Each question carries 2 marks

11. Show that the Dirchilet's function is not continuous at any point of \mathbb{R}.
12. Show that absolute value function $f(x)=|x|$ is continuous at every point of \mathbb{R}.
13. Give an example of functions f and g that are both discontinuous at a point $c \in \mathbb{R}$ such that the sum $f+g$ is continuous at c.
14. Discuss the continuity of the function $F: \mathbb{R} \rightarrow \mathbb{R}$, at $x=0$ defined by

$$
F(x)= \begin{cases}0 & \text { if } x=0 \\ x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0\end{cases}
$$

15. Discuss the continuity of the cosine function on \mathbb{R}.
16. Discuss the differentiability on \mathbb{R}, of the function

$$
F(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

17. Find $\lim _{x \rightarrow \infty} e^{-x} x^{2}$.
18. Show that if $f: I \rightarrow \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c.
19. Suppose that f is continuous on $[a, b]$ and differentiable on (a, b) and that $f^{\prime}(x)=0$ for all $x \in(a, b)$. Show that f is constant on I.
20. If $f, g \in R[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, Show that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
21. State Lebesgue integrability criterion. Use it to show that every step function on $[a, b]$ is reimann integrable.
22. If $f \in R[a, b]$, show that $|f| \in R[a, b]$ and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x \leq M(b-a)$, where $|f| \leq M$ for all $x \in[a, b]$.

Section III

Answer any 6 questions from this section.
 Each question carries 4 marks.

23. State and prove boundedness theorem.
24. State and prove Bolzano intermediate value theorem.
25. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be a continuous function on I, show that $f(I)$ is a closed bounded interval.
26. Establish chain rule of differentiation.
27. State and prove mean value theorem.
28. Show that $1-\frac{x^{2}}{2} \leq \cos x$ for all $x \in \mathbb{R}$.
29. If $f \in R[a, b]$, show that f is bounded on $[a, b]$.
30. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, then $f \in R[a, b]$.
31. State and prove Fundamental theorem of Calculus (First form).

Section IV

Answer any 2 questions from this section.

Each question carries 15 marks.
32. (a) State and prove Maximum Minimum theorem.
(b) State and prove location of roots theorem.
33. (a) State and prove Caratheodary theorem.
(b) Prove that sum, product and quotient of functions differentiable at a point $c \in I$ are differentiable at c.
34. (a) Establish Cauchy criterion for riemann integrability.
(b) State and prove squeeze theorem.
35. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ and $c \in[a, b]$. Prove that If $f \in R[a, b]$ if and only if its restriction to $[a, c]$ and $[c, b]$ are both riemann integrable. Also show that $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
(b) If $f, g \in R[a, b]$, show that If $f g \in R[a, b]$.
(c) Discuss the method of integration by parts for Riemann integrals.

