FIFTH SEMESTER B.TECH DEGREE EXAMINATION (2013 SCHEME)

13.506.3(ELECTIVE I) MATHEMATICAL METHODS IN CHEMICAL ENGINEERING (H)
 (Model Question Paper)

Time: 3Hours
Max.Marks:100

PART A

Answer all questions. Each question carries $\mathbf{2}$ marks.

1. Distinguish between finite and infinite dimensional spaces.
2. State the axioms to be satisfied by metric of a vector.
3. Are the following sets of vectors form a basis for R^{3}. Justify?

$$
\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\mathrm{t}},\left[\begin{array}{lll}
2 & 1 & -1
\end{array}\right]^{\mathrm{t}},\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]^{\mathrm{t}},\left[\begin{array}{lll}
5 & 9 & 10
\end{array}\right]^{\mathrm{t}}
$$

4. Classify the following equations as parabolic, elliptic or hyperbolic.
(a) $\frac{\partial u}{\partial t}=\frac{\partial 2 u}{\partial x 2}+\frac{\partial 2 u}{\partial y 2}$
(b) $\frac{\partial u}{\partial x}+\frac{\partial 2 u}{\partial x \partial y}+\frac{\partial 2 u}{\partial x 2}+\frac{\partial 2 u}{\partial z 2}+\frac{\partial u}{\partial y}=0$
5. Explain Sturm- Louiville theory.
6. Discuss about the physical significance of green's function.
7. Determine the direction of fluid flow (laminar) between two horizontal plates when the pressure decreases with z . the governing equation is given by.

$$
\frac{\partial 2 \mathrm{vz}}{\partial 2 \mathrm{y} 2}=\frac{\rho}{\mu} \frac{\partial p}{\partial z}
$$

8. Classify the steady states of a two dimensional system in terms of its eigenvalues.
9. Discuss briefly on poincare maps.
10. Write short note on bifurcation theory.
(10x2 = 20 Marks)

PART B

Answer any one question from each module.

Module - I

11. a) Consider two vectors, $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\mathrm{T}}$ and $\mathrm{B}=\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)^{\mathrm{T}}$.

Find (i) metric between A and B; (ii) Norm of A and norm of B; (iii) Inner product of A and B.
b) Check whether the following vectors are linearly dependent or independent.
$u_{1}=\left[\begin{array}{llll}1 & 1 & 1\end{array}\right]^{\mathrm{t}}, \mathrm{u}_{2}=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right] \mathrm{t} ; \mathrm{u}_{3}=\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]^{\mathrm{t}}$.
OR
12. Check $u_{1}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{t}, u_{2}=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]^{t}, u_{3}=\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]^{t}$ form a basis set or not. Using these basis vectors obtain a set of orthonormal basis set. Consider the fourth vector $u_{4}=\left[\begin{array}{lll}4 & 1 & -2\end{array}\right]^{t}$ and express it in terms of the orthonormal basis vectors.

Module - II

13. The dynamics of the system is given by $\frac{d x}{d t}=A x+b$
$\mathrm{A}=\left[\begin{array}{cc}-2 & 0 \\ 1 & -3\end{array}\right]$

$$
\mathrm{b}=\left[\begin{array}{ll}
1 & \alpha
\end{array}\right]^{\mathrm{t}}
$$

The system is at steady state with $\alpha=0$. Calculate the evolution of x with time and the new steady state when α is changed to 3 .

OR
14. Consider

$$
\mathrm{Lu}=\frac{d 2 u}{d x 2}-\frac{d u}{d x}, \mathrm{u}(0)=0, \mathrm{u}(1)=0
$$

(a) Find L^{*} and B^{*}
(b) Convert it to sturm- louiville form.

Module III

15. Solve the non-homogeneous problem using green's function.
$\frac{d 2 u}{d x 2}=\sin \mathrm{x}, \operatorname{Subject}$ to $\mathrm{u}(0)=1, \mathrm{u}(1)=2$.

OR
16. $u^{\prime \prime}(x)=\sin (\pi x) \sin (2 \pi x)$
Subject to
$u(0)=0, u^{\prime}(0)=u^{\prime}(1)$.
Does this equation have a unique solution? Use: (a) Maximum principles (b) energy
methods.

Module IV

17. Determine the possible steady states and examine their stability for $\frac{d x_{1}}{d t}=\mathrm{x}_{1}{ }^{2}-\mathrm{ax}_{1} \mathrm{x}_{2}-\mathrm{x}_{1}$ and $\frac{d x_{2}}{d t}=\mathrm{bx}_{2}{ }^{2}-\mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{2}$ where a and b are real positive. Evaluate conditions on parameters such that saddle node and Hopf bifurcation occur in each steady state.

OR

18. a) Give an account of the stability tests for n - dimensional equations.
b) Discuss the methods to quantify the long-time system behaviour.
