KERALA UNIVERSITY

Model Question Paper- M. Sc. Examination 2020 admission onwards
Branch: Mathematics
MM 244- Number Theory
Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Prove that $\phi(n)>\frac{n}{6}$ for all n with at most 8 distinct prime factors.
2. Find all integers n such that $\phi(n)=\frac{n}{2}$
3. Prove that there are infinitely many primes of the form $4 n-1$
4. Prove that 5 is a quadratic residue of an odd prime p if $p \equiv \pm 1 \bmod 10$, and that 5 is a nonresidue if $p \equiv \pm 3 \bmod 10$.
5. Determine whether 888 is a quadratic residue or nonresidue of the prime 1999.
6. If p is an odd prime and $\alpha \geq 1$ then prove that there exist odd primitive roots p^{α}.
7. Prove that m is prime if and only if $\exp _{m}(a)=m-1$ for some a
8. Let g be a primitive root of an odd prime p . Prove that $-g$ is also a primitive root of p if $p \cong 1 \bmod 4$, but that $\exp _{p}(-g)=\frac{p-1}{2}$ if $p \cong 3 \bmod 4$.
$5 \times 3=15$

Part B
 Answer all questions from 9 to 13 Each question carries 12 marks

9. A. i. Prove that $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$ for $n \geq 1$ [6 Marks]
ii. Prove that for $n \geq 1 \sum_{d \mid n} \Lambda(d)=\log n$ [6 marks]

OR

B. Prove that the set of all arithmetical functions f with $f(1) \neq 0$ forms an abelian group with respect to the Dirchlet convolution. [12 marks]
10. A. Prove that a finite abelian group G of order n has exactly n distinct characters. [12 Marks]

OR

B. i. Let χ be any real-valued character $\bmod k$ and let $A(n)=\sum_{d \mid n} \chi(d)$. Prove that $A(n) \geq 0$ for all n and $A(n) \geq 1$ if n is a square.[4 marks]
ii. For any real-valued nonprincipal character $\chi \bmod k$, let $A(n)=\sum_{d \mid n} \chi(d)$ and $B(x)=\sum_{n \leq x} \frac{A(n)}{\sqrt{n}}$, then prove the following
A. $B(x) \rightarrow \infty$ as $x \rightarrow \infty$
B. $B(x)=2 \sqrt{x} L(1, \chi)+O(1)$ for all $x \geq 1$, therefore $L(1, \chi) \neq 0$ [8 marks]
11. A. For $x<1$ and $\chi \neq \chi_{1}$ Prove that $\sum_{p \leq x} \frac{\chi(p) \log p}{p}=-L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O(1)$ [12 Marks]

OR

B. i. For $x>1$ Prove that $\sum_{p \leq x, p \cong 1(\bmod k)} \frac{\log p}{p}=\frac{1-N(k)}{\psi(k)} \log x+O(1)$ [6 Marks]
ii. If $\chi \neq \chi_{1}$ and $L(1, \chi)=0$ Prove that $L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=\log x+O(1)$ [6 Marks]
12. A. i. Prove that for every odd prime $p,(-1 \mid p)=(-1)^{\frac{p-1}{2}}$ and $(2 \mid p)=(-1)^{\frac{p^{2}-1}{8}}$ [9 Marks]
ii. Evaluate (780/1001) [3 Marks]

OR

B. State and prove Gauss Lemma.[12 Marks]
13. A. Let p be an odd prime and let d be any positive divisor of $p-1$. Prove that in every reduced residue system mod p , there exactly $\phi(d)$ numbers a such that $\exp _{p}(a)=d$ [12 Marks]

OR

B. i. Let P be an odd prime, Prove that if g is a primitive root $\bmod \mathrm{p}$, then g is also a primitive root $\bmod p^{\alpha}$ for all $\alpha \geq 1$ if and only if $g^{p-1} \neq 1\left(\bmod p^{2}\right)$ [10 Marks] ii. Prove that m is prime if and only if $\exp _{m}(a)=m-1$ for some a.[2 Marks]

$$
5 \times 12=60
$$

