Fifth Semester B.Tech Degree Examination

(2013 Scheme)

13.501 : ENGINEERING MATHEMATICS-IV (BCHMPSU)

Model Question Paper

Time: 3 hours

Max. Mark: 100

Part A

Answer all question, each question carries 4 marks

- 1. If $f(x) = \frac{c}{x^2+1}$, $-\infty < x < \infty$ is a pdf, find c and distribution function F(x).
- 2. The time in hours required to repair a machine is exponentially distributed with mean 20 hours. What is the probability that the required time
 - i. Exceeds 30 hours and
 - ii. Atmost 10 hours
- 3. Convert the equation $y = \frac{x}{a+bx}$ to a linear form and write the normal equation to fit it.
- 4. Explain the terms "null hypothesis", "critical region", 'Type- 2 error" and "level of significance".
- 5. Obtain all basic feasible solutions to the set of equations
 - $2x_1 + 3x_2 + 4x_3 + x_4 = 2$
 - $x_1 + x_2 + 7x_3 + x_4 = 4$

Part B

Answer one full question from each module, each question carries 20 marks.

Module-1

6.a) If $f(x) = 5(1-x)^4$, $0 \le x \le 1$

= 0, otherwise .Find $P(x \ge \frac{1}{2})$. Also find the mean and variance.

- b) A machine manufactured bolts with 3% defectives. In a random sample of 10 bolts, what is the probability that these are
 - i. Exactly two will be defective
 - ii. At least two will be defective .
- c) Derive mean and variance of Poisson distribution.
- 7. a) Assume the mean height of soldiers to be 68 inches with a variance of 10.6 inches. How many soldiers in a regiment of 1000 would you expect to be over six feet tall ?
- b) A random variable X has a uniform distribution over (-5, 5). Find
 - i. P[|x 2| < 3]
- ii. Find K for which $P(x < K) = \frac{1}{3}$
- c) Find the mean and standard deviation of the following normal distribution

 $f(x) = ke^{-2x^2 + 10x}$

Module-2

 a) The following data relate to the scores obtained by 9 salesmen of a company in an intelligence test and their weakly sales in thousand rupees

Salesman	Α	В	С	D	Ε	F	G	Η	Ι
Total score	30	60	50	60	80	50	80	40	70
Weekly sales	30	60	40	50	60	30	70	50	60

- i. Obtain the regression equation of sales on scores of the salesmen.
- ii. If the intelligence test score of a salesman is 55 what would be his expected weekly sales
- b) A random sample from 200 villages from a district has average population per village was found to be 420 with a standard deviation of 50. Another random sample of 100 villages from the same district gave an average population 480 per village with a standard deviation of 60. Is the difference between the average of the two samples statistically significant? Use 1% level of significance.

- 9.a) A sample of 100 items with mean 8.2 Kg , Standard deviation 1.5 Kg. Find 90% confidence limit for the population mean.
 - b) A compliancy claims that the mean life of its bulbs produced is 1600 hours. A random sample of 100 bulbs gave a mean life of 1570 hours with a standard deviation 120 hours. Test the claims at 5% level of significance.
 - b) Fit a parabola $y = a + bx + cx^2$ to the following data

X :	2	4	6	8	10
Y :	3.07	12.85	31.47	57.38	91.29

Module-3

10. a) A firm manufactures 3 products A, B and C. The profits are Rs.3 ,Rs.2 and Rs.4 respectively. The firm has two machines M_1 and M_2 . Below is required processing time in minutes for each machine on each product

	Α	В	С
M_1	4	3	5
M_2	2	2	4

Machines M_1 and M_2 have 2000 and 2500 machine - minutes respectively. The firm must manufacture 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up a LPP to maximize profit.

b) Solve by Big-M method

Maximize $Z = 6x_1 - 3x_2 + 2x_3$

Subject to $2x_1 + x_2 + x_3 \le 16$

$$3x_1 + 2x_2 + x_3 \le 18$$

 $x_2 - 2x_3 \ge 8$
 $x_1, x_2, x_3 \ge 0$

11. a)) Solve by Simplex method

Maximize
$$Z= 2x_1 + 3x_2$$

Subject to $2x_1 + x_2 \le 6$
 $x_1 + 2x_2 \le 8$
 $x_1 - x_2 \le 1$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

b)) Solve by Big-M method

Maximize
$$Z=4x_1 + 5x_2 + 2x_3$$

Subject to $2x_1 + x_2 + x_3 \le 10$
 $x_1 + 3x_2 + x_3 \le 12$
 $x_1 + x_2 + x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

Module-4

12. a) Solve using the principle of duality

Minimise Z= $2x_1 + 2x_2$ Subject to $2x_1 + 4x_2 \ge 1$ $x_1 + 2x_2 \ge 1$ $2x_1 + x_2 \ge 1$ $x_1, x_2 \ge 0$

b) Solve the following Transportation problem

13. a) Solve using the principle of duality

Maximise Z=3

Subject to

b) Solve the following to assign the jobs to machines to minimize the cost

				MACHI	INES		
		Α	В	С	D	Ε	
	1	11	17	8	16	20	
JOBS	2	9	7	12	6	15	
	3	13	16	15	12	16	
	4	21	24	17	28	26	
	5	14	10	12	11	15	