UNIVERSITY OF KERALA Model Question Paper First Degree Programme in Statistics Semester IV MM 1431.4 Mathematics – IV

(Linear Algebra)

Time: 3 hours

Maximum Marks: 80

Section-I

All the first 10 questions are compulsory. They carry 1 mark each.

1. Are the following matrices row equivalent:

	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 5 4 0	0 3 9 0	$\begin{bmatrix} 0\\7\\10\\0 \end{bmatrix}$	and	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	0 1 4 0	0 3/5 9 0	0 7/5 10 0
2.	Check whether the matr	ix	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	1 16 0	$\begin{bmatrix} -3\\1\\4 \end{bmatrix}$	is sing	ular		
3.	Find the inverse of the matrix: $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$								
4.	Find the rank of the mat	rix	: [1 0	3 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$				

- 5. Define a dilation from \mathbb{R}^2 to \mathbb{R}^2 .
- 6. Write down the standard matrix corresponding to the transformation of reflection in the line $x_2 = -x_1$.
- 7. State true or false: If A is an $m \times n$ matrix and the transformation $x \to Ax$ is onto, then rank A = m.
- 8. Let A be a 7 × 5 matrix. What must m and n be in order to define $T: \mathbb{R}^m \to \mathbb{R}^n$ by T(x) = Ax
- 9. If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of exactly vectors.
- 10. Find the matrix of the quadratic form: $Q(x) = x_3^2 4x_1x_2 + 4x_1x_3$

Section-II Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

11. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
, find A^n
12. If $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, show that $A^2 - 4A + 5I = 0$
13. Find the Eigen values of the matrix: $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$

14. By reducing it to the echelon form, find the rank of the matrix: $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix}$

- 15. Find the index of the nilpotent matrix: $\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & -2 & 0 \end{bmatrix}$
- 16. Show that a matrix and its transpose have the same Eigen values.
- 17. Is (1, -2) and (-2, 4) a basis for \mathbb{R}^2 over \mathbb{R} ?
- 18. Define a linear transformation and check whether the transformation T is linear if T is defined by:

 $T(x_1, x_2) = (2x_1 - 3x_2, x_1 + 4, 5x_2).$

- 19. Let *T* be the linear transformation defined by $T(e_1) = (1, 4)$, $T(e_2) = (-2, 9)$ and $T(e_3) = (3, -8)$, where e_1, e_2 and e_3 are columns of the 3×3 identity matrix. Check whether *T* is one-one or not.
- 20. Let $v_1 = \begin{bmatrix} 3 & 6 & 2 \end{bmatrix}^T$, $v_2 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$, $x = \begin{bmatrix} 3 & 12 & 7 \end{bmatrix}^T$ and $B = \{v_1, v_2\}$. Find the co-ordinate vector $[x]_B$ of x relative to B.
- 21. Find the dimension of the null space and the column space of:

$$\begin{pmatrix} 1 & 3 & -4 & 2 & -1 & 6\\ 0 & 0 & 1 & -3 & 7 & 0\\ 0 & 0 & 0 & 1 & 4 & -3\\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

22. If $A = \begin{bmatrix} 2 & 1 & 1\\ -1 & 2 & -1\\ 1 & -1 & 2 \end{bmatrix}$, show that $A^3 - 6A^2 + 11A - 6I = 0$

Section-III Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

23. Test for consistency and solve:

5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 10z = 5

24. Let A be an $n \times n$ matrix with n distinct Eigen values. Prove that the corresponding Eigen vectors are linearly independent.

25. Find the Eigen vectors of the matrix:
$$\begin{bmatrix} 3 & -5 & -4 \\ -5 & -6 & -5 \\ -4 & -5 & 3 \end{bmatrix}$$

- 26. Diagonalise the matrix: $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
- 27. Check whether {(-1, 1, 2), (2, -3, 1), (10, -14, 0)} is a basis for \mathbb{R}^3 over \mathbb{R} or not.
- 28. Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is one-one. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

- 29. Let $b_1 = \begin{bmatrix} 1 & -3 \end{bmatrix}^T$, $b_2 = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$, $c_1 = \begin{bmatrix} -7 & 9 \end{bmatrix}^T$, $c_2 = \begin{bmatrix} -5 & 7 \end{bmatrix}^T$. Consider the bases of \mathbb{R}^2 given by $B_1 = \{b_1, b_2\}$ and $B_2 = \{c_1, c_2\}$. Find the change of co-ordinate matrix from B_2 to B_1 and the change of co-ordinate matrix from B_1 to B_2 .
- 30. Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$ and $B = \{b_1, b_2\}$; for $b_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, $b_2 = \begin{bmatrix} 5 & 4 \end{bmatrix}^T$. Define T from \mathbb{R}^2 to \mathbb{R}^2 by T(x) = Ax. Show that b_1 is an Eigen vector of A. Is A diagonalizable?

31. Make a change of variable x = Py, that transforms the quadratic form $x_1^2 + 10x_1x_2 + x_2^2$ in to a quadratic form without cross product term. Give P and the new quadratic form.

Section-IV Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. a. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation and let $\{v_1, v_2, v_3\}$ be a linearly independent set in \mathbb{R}^n . Show that the set $\{T(v_1), T(v_2), T(v_3)\}$ is also linearly independent
 - b. Find four bases for \mathbb{R}^3 over \mathbb{R} , no two of which have a vector in common.
- 33. Define T from \mathbb{R}^2 to \mathbb{R}^2 by T(x) = Ax where $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$. Find a basis B for \mathbb{R}^2 with the property that $[T]_B$ is diagonal.
- 34. Prove that $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalisable and find the diagonal form.
- 35. Prove that the vectors $x_1 = (2 1 4)$, $x_2 = (4 0 1)$ and $x_3 = (0 1 2)$ are linearly dependent and find a relationship between them.
