UNIVERSITY OF KERALA
 Model Question Paper
 First Degree Programme in Statistics
 Semester IV
 MM 1431.4 Mathematics - IV
 (Linear Algebra)

Time: 3 hours
Maximum Marks: 80

Section-I

All the first 10 questions are compulsory. They carry 1 mark each.

1. Are the following matrices row equivalent:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 3 / 5 & 7 / 5 \\
0 & 4 & 9 & 10 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

2. Check whether the matrix $\left[\begin{array}{ccc}1 & 1 & -3 \\ 2 & 16 & 1 \\ 0 & 0 & 4\end{array}\right]$ is singular.
3. Find the inverse of the matrix: $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
4. Find the rank of the matrix: $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
5. Define a dilation from \mathbb{R}^{2} to \mathbb{R}^{2}.
6. Write down the standard matrix corresponding to the transformation of reflection in the line $x_{2}=-x_{1}$.
7. State true or false: If A is an $m \times n$ matrix and the transformation $x \rightarrow A x$ is onto, then $\operatorname{rank} A=m$.
8. Let A be a 7×5 matrix. What must m and n be in order to define $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by $T(x)=A x$
9. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly vectors.
10. Find the matrix of the quadratic form: $Q(x)=x_{3}{ }^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}$

Section-II
 Answer any 8 questions from among the questions 11 to 22.
 These questions carry 2 marks each.

11. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, find A^{n}
12. If $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$, show that $A^{2}-4 A+5 I=0$
13. Find the Eigen values of the matrix: $\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$
14. By reducing it to the echelon form, find the rank of the matrix: $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$
15. Find the index of the nilpotent matrix: $\left[\begin{array}{ccc}0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & -2 & 0\end{array}\right]$
16. Show that a matrix and its transpose have the same Eigen values.
17. Is $(1,-2)$ and $(-2,4)$ a basis for \mathbb{R}^{2} over \mathbb{R} ?
18. Define a linear transformation and check whether the transformation T is linear if T is defined by: $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-3 x_{2}, x_{1}+4,5 x_{2}\right)$.
19. Let T be the linear transformation defined by $T\left(e_{1}\right)=(1,4), T\left(e_{2}\right)=(-2,9)$ and $T\left(e_{3}\right)=(3,-8)$, where e_{1}, e_{2} and e_{3} are columns of the 3×3 identity matrix. Check whether T is one-one or not.
20. Let $v_{1}=\left[\begin{array}{lll}3 & 6 & 2\end{array}\right]^{\mathrm{T}}, \quad v_{2}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{\mathrm{T}}, \quad \mathrm{x}=\left[\begin{array}{lll}3 & 12 & 7\end{array}\right]^{\mathrm{T}}$ and $B=\left\{v_{1}, v_{2}\right\}$. Find the co-ordinate vector $[\mathrm{x}]_{B}$ of x relative to B.
21. Find the dimension of the null space and the column space of:

$$
\left(\begin{array}{cccccc}
1 & 3 & -4 & 2 & -1 & 6 \\
0 & 0 & 1 & -3 & 7 & 0 \\
0 & 0 & 0 & 1 & 4 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

22. If $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, show that $A^{3}-6 A^{2}+11 A-6 I=0$

Section-III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

23. Test for consistency and solve:

$$
5 x+3 y+7 z=4 ; \quad 3 x+26 y+2 z=9 ; \quad 7 x+2 y+10 z=5
$$

24. Let A be an $n \times n$ matrix with n distinct Eigen values. Prove that the corresponding Eigen vectors are linearly independent.
25. Find the Eigen vectors of the matrix: $\left[\begin{array}{ccc}3 & -5 & -4 \\ -5 & -6 & -5 \\ -4 & -5 & 3\end{array}\right]$
26. Diagonalise the matrix: $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
27. Check whether $\{(-1,1,2),(2,-3,1),(10,-14,0)\}$ is a basis for \mathbb{R}^{3} over \mathbb{R} or not.
28. Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Show that T is one-one. Does T map \mathbb{R}^{2} onto \mathbb{R}^{3} ?
29. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{\mathrm{T}}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{\mathrm{T}}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{\mathrm{T}}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{\mathrm{T}}$. Consider the bases of \mathbb{R}^{2} given by $B_{1}=\left\{b_{1}, b_{2}\right\}$ and $B_{2}=\left\{c_{1}, c_{2}\right\}$. Find the change of co-ordinate matrix from B_{2} to B_{1} and the change of co-ordinate matrix from B_{1} to B_{2}.
30. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$; for $b_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}, b_{2}=\left[\begin{array}{ll}5 & 4\end{array}\right]^{\mathrm{T}}$. Define T from \mathbb{R}^{2} to \mathbb{R}^{2} by $T(x)=A x$. Show that b_{1} is an Eigen vector of A. Is A diagonalizable?
31. Make a change of variable $x=P y$, that transforms the quadratic form $x_{1}{ }^{2}+10 x_{1} x_{2}+x_{2}{ }^{2}$ in to a quadratic form without cross product term. Give P and the new quadratic form.

Section-IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

32. a. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a linearly independent set in \mathbb{R}^{n}. Show that the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is also linearly independent
b. Find four bases for \mathbb{R}^{3} over \mathbb{R}, no two of which have a vector in common.
33. Define T from \mathbb{R}^{2} to \mathbb{R}^{2} by $T(x)=A x$ where $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$. Find a basis B for \mathbb{R}^{2} with the property that $[T]_{B}$ is diagonal.
34. Prove that $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$ is diagonalisable and find the diagonal form.
35. Prove that the vectors $x_{1}=\left(\begin{array}{lll}2 & -1 & 4\end{array}\right), x_{2}=\left(\begin{array}{lll}4 & 0 & 12\end{array}\right)$ and $x_{3}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ are linearly dependent and find a relationship between them.
