UNIVERSITY OF KERALA
 Model Question Paper
 First Degree Programme in Physics and Computer Applications Semester IV

 MM 1431.4 Complementary Course for Physics

 MM 1431.4 Complementary Course for Physics and Computer Applications and Computer Applications
 Mathematics - IV (Linear Transformations, Vector Integration and Complex Analysis)

Time: 3 hours
Maximum Marks: 80

Section-I

All the first 10 questions are compulsory. They carry 1 mark each.

1. Define a contraction from \mathbb{R}^{2} to \mathbb{R}^{2}
2. Let A be a 7×5 matrix. What must m and n be in order to define $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by $T(x)=A x$
3. Write down the standard matrix corresponding to the transformation of horizontal shear.
4. Using Stoke's theorem find the value of $\int_{C} \vec{r}$. $d \vec{r}$ where C is a simple closed curve in 2-space.
5. If V is the volume enclosed by a surface S, then find the value of $\iint_{S} \vec{r} . \vec{n} d S$
6. Find all roots of the equation $\log z=\frac{i \pi}{2}$
7. Give an example of a function which is analytic everywhere.
8. If $u=x^{2}-2 x y+a y^{2}$ is a harmonic function, find the value of a.
9. Find an analytic function whose real part is $u=x^{2}-y^{2}$.
10. Evaluate $\int_{C} \frac{d z}{z-2}$ where C is the circle $|z|=3$.

Section-II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.
11. Define a linear transformation and check whether the transformation T is linear if T is defined by: $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-3 x_{2}, x_{1}+4,5 x_{2}\right)$.
12. Let T be the linear transformation defined by $T\left(e_{1}\right)=(1,4), T\left(e_{2}\right)=(-2,9)$ and $T\left(e_{3}\right)=(3,-8)$, where e_{1}, e_{2} and e_{3} are columns of the 3×3 identity matrix. Check whether T is one-one or not.
13. Find the dimension of the null space and the column space of:

$$
\left(\begin{array}{cccccc}
1 & 3 & -4 & 2 & -1 & 6 \\
0 & 0 & 1 & -3 & 7 & 0 \\
0 & 0 & 0 & 1 & 4 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

14. Using Green's theorem evaluate $\int_{C} f(x) d x+g(y) d y$ where C is an arbitrary simple closed curve in an open connected set D. What do you infer about the vector field $\vec{F}(x, y)=f(x) \hat{\imath}+g(y) \hat{\jmath}$.
15. Evaluate the flux of the vector field $\vec{F}(x, y, z)=z \hat{k}$ across the outward oriented sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
16. Find the work done by the force field $\vec{F}(x, y)=x y \hat{\imath}+x^{2} \hat{\jmath}$ on a particle that that moves along the parabola $x=y^{2}$ from $(0,0)$ to $(1,1)$
17. Prove that the real and imaginary parts of an analytic function are harmonic.
18. Find an analytic function $f(z)=u+i v$ whose real part is $e^{x}(x \cos y-y \sin y)$
19. Show that an analytic function is constant if its modulus is constant.
20. Evaluate $\int_{C}\left(y-x-3 x^{2} i\right) d z$ where $z=x+i y$ and C is the straight line joining 0 to $1+i$.
21. State Cauchy's integral formula. Hence evaluate $\int_{C} \frac{z^{3} d z}{z-2}$ where C is the circle $|z|=3$.
22. Evaluate $\int_{C} \frac{(5 z-2) d z}{z(z-1)}$ where C is the circle $|z|=2$ described counter clockwise.

Section-III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

23. Let $b_{1}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{\mathrm{T}}, b_{2}=\left[\begin{array}{ll}-2 & 4\end{array}\right]^{\mathrm{T}}, c_{1}=\left[\begin{array}{ll}-7 & 9\end{array}\right]^{\mathrm{T}}, c_{2}=\left[\begin{array}{ll}-5 & 7\end{array}\right]^{\mathrm{T}}$. Consider the bases of \mathbb{R}^{2} given by $B_{1}=\left\{b_{1}, b_{2}\right\}$ and $B_{2}=\left\{c_{1}, c_{2}\right\}$. Find the change of co-ordinate matrix from B_{2} to B_{1} and the change of co-ordinate matrix from B_{1} to B_{2}.
24. Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$ and $B=\left\{b_{1}, b_{2}\right\}$; for $b_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}, b_{2}=\left[\begin{array}{ll}5 & 4\end{array}\right]^{\mathrm{T}}$. Define T from \mathbb{R}^{2} to \mathbb{R}^{2} by $T(x)=A x$. Show that b_{1} is an Eigen vector of A. Is A diagonalizable?
25. Evaluate the surface integral $\iint_{\sigma} x z d S$ where σ is the part of the plane $x+y+z=1$ that lies in the first octant. What happens if the integrand is $x y$?
26. Check whether $\vec{F}(x, y)=y e^{x y} \hat{\imath}+x e^{x y} \hat{\jmath}$ is conservative or not. If it is so, find the corresponding scalar potential.
27. Show that the function $f(z)=\left\{\begin{array}{ll}\frac{(\bar{z})^{2}}{z} ; & z \neq 0 \\ 0 ; & z=0\end{array}\right.$ is not differentiable at $z=0$ even though Cauchy-Riemann equations are satisfied there.
28. If a function is analytic, show that it is independent of \bar{z}.
29. Evaluate $\int_{C} \frac{\left(z^{2}+5\right) d z}{(z-2)^{3}}$ where C is the circle $|z|=3$ described counter clockwise.
30. Evaluate $\int_{C} \frac{\left(3 z^{2}+2\right) d z}{(z-1)\left(z^{2}+9\right)}$ where C is the circle $|z|=4$ described counter clockwise.
31. Verify Cauchy's integral theorem for the function $f(z)=z^{2}$, the integral may be done along the circle $|z|=1$

Section-IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

32. Define T from \mathbb{R}^{2} to \mathbb{R}^{2} by $T(x)=A x$ where $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$. Find a basis B for \mathbb{R}^{2} with the property that $[T]_{B}$ is diagonal.
33. a. Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Show that T is one-one. Does T map \mathbb{R}^{2} onto \mathbb{R}^{3} ?
b. Check whether $\{(-1,1,2),(2,-3,1),(10,-14,0)\}$ is a basis for \mathbb{R}^{3} over \mathbb{R} or not.
34. Consider the function $\vec{F}(x, y, z)=\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}$ over the volume enclosed by the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b$ and $0 \leq z \leq c$. Verify Gauss's divergence theorem for \vec{F}.
35. a. Define an analytic function. Is $f(z)=\bar{z}$ analytic? Why?
b. If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$, find an analytic function $f(z)=u+i v$ in terms of z
