UNIVERSITY OF KERALA
 Model Question Paper

First Degree Programme in Mathematics Semester IV

 MM 1441 Methods of Algebra and Calculus- II

 MM 1441 Methods of Algebra and Calculus- II}

Time: 3 hours
Maximum Marks: 80

Section-I

All the first 10 questions are compulsory. They carry 1 mark each.

1. Find $\left(x^{2}+x+1\right)^{2}$ in $\mathbb{F}_{2}[x]$.
2. For which values of k in \mathbb{Q}, does $x-k$ divide $x^{3}-k x^{2}-2 x+k+3$?
3. Find the remainder in $\mathbb{Q}[x]$ when $x^{40}-8 x^{12}+3$ is divided by $x^{4}-1$.
4. If $N(e)$ is the number of elements of U_{p} which have order e, then, $\sum_{e / p-1} N(e)=\ldots \ldots$
5. State whether the polynomials $x+2$ and $4 x+3$ are associates of each other in $\mathbb{Z} / 5 \mathbb{Z}[x]$
6. $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)=\cdots$
7. Find the point at which $f(x, y)=(x-2)^{2}+(y+1)^{2}$ has an absolute minimum.
8. Express $\int_{0}^{2} \int_{0}^{\sqrt{x}} f(x, y) d y d x$ as an equivalent integral with the order of integration reversed.
9. If $f(x, y)=x^{3} y^{2}-5 x^{2} y-2 x^{5}$, find $f_{x y y}$.
10. Evaluate: $\int_{2}^{4} \int_{0}^{1} x^{2} y d x d y$

Section-II

Answer any 8 questions from among the questions 11 to 22.
 These questions carry 2 marks each.

11. In $\mathbb{Q}[x]$, when $f(x)$ is divided by $\left(x^{2}-3\right)(x+1)$, the reminder is $x^{2}+2 x+5$. What is the reminder when $f(x)$ is divided by $x^{2}-3$?
12. If R is an integral domain, show that $R[x]$ is also an integral domain.
13. Which of the following polynomials is irreducible in $\mathbb{R}[x]$:
i. $x^{2}-2$
ii. $x^{2}+1$
iii. $x^{2}-5 x+6$
ii. $x^{3}-1$
14. Write x^{3} in base $x+1$
15. Using Euclid's algorithm find a g.c.d. of $x^{2}-x+4$ and $x^{3}+2 x^{2}+3 x+2$ in $\mathbb{F}_{3}[x]$
16. Use geometric arguments to evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \sqrt{1-x^{2}-y^{2}} d x d y$
17. Sketch the domain of $f(x, y)=\ln \left(1-x-x^{2}\right)$
18. Show that $z=e^{x} \sin y+e^{x} \cos y$ satisfies Laplace's equation.
19. Suppose that $w=x^{3} y^{2} z^{4} ; x=t^{2}, y=t+2, z=2 t^{4}$. Find the rate of change of w with respect to t at $t=1$ by using the chain rule and check the answer by expressing w as a function of t and differentiating.
20. Locate all relative maxima, relative minima and saddle points, if any, of the function $f(x, y)=x^{2}+x y+y^{2}-3 x$
21. Find an equation of the tangent plane to the parametric surface: $x=u, y=v, z=u^{2}+v^{2}$
22. Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y$ by reversing the order of integration

Section-III

Answer any 6 questions from among the questions 23 to 31. These questions carry 4 marks each.

23. Find a solution of $y^{4}=25 y+156$ by Ferrari's method.
24. Find a solution of $x^{3}+3 x=5$ by Cardano's method.
25. Use Newton's method to approximate the real solution of $x^{3}+x-1=0$.
26. For any n, prove that: $\sum_{d / n} \varphi(d)=n$
27. If p is irreducible and f is any polynomial which is not divisible by p, show that the greatest common divisor of p and f is 1 .
28. Let $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$. Is it possible to define $f(0,0)$ so that f will be continuous at $(0,0)$? Justify your answer.
29. Let $f(x, y)=\left(x^{2}+y^{2}\right)^{2 / 3}$. Show that $f_{x}(x, y)= \begin{cases}\frac{4 x}{3\left(x^{2}+y^{2}\right)^{1 / 3}} ; & (x, y) \neq(0,0) \\ 0 ; & (x, y)=(0,0)\end{cases}$
30. Use a double integral in polar coordinates to find the area of the region inside the circle $r=4 \sin \theta$ and outside the circle $r=2$.
31. Evaluate: $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{-5+x^{2}+y^{2}}^{3-x^{2}-y^{2}} x d z d y d x$

Section-IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.
32. State and prove the Division Theorem for $\mathbb{F}[x]$ where \mathbb{F} is a field. Deduce the Reminder Theorem.
33. (a) Prove that any polynomial of degree greater than or equal to 1 in $\mathbb{F}[x]$ where \mathbb{F} is a field is irreducible or factors into a product of irreducible polynomials
(b) Factor $x^{5}-x$ into irreducible polynomials in $\mathbb{Z} / 5 \mathbb{Z}[x]$.
34. (a) Find the absolute extrema of the function $f(x, y)=x^{2}-3 y^{2}-2 x+6 y$ on the closed and bounded set R where R is the square with vertices $(0,0),(0,2),(2,2)$ and $(2,0)$.
(b) Use Lagrange Multiplier Method to find the points on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=45$ that are closest to and farthest from (1,2).
35. (a) Use double integration to find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=9$ and the planes: $z=0, z=3-x$.
(b) Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=16$ between the planes $z=1$ and $z=2$.

