Model Question Paper

FOURTH SEMESTER B.TECH. EXAMINATIONS
 Engineering mathematics -IV

(COMPLEX ANALYSIS AND LINEAR ALGRBRA)
(Common to AFRT)
(2013 Scheme)
Time: 3Hrs
Max. Marks :100

Part A

Answer all questions. Each question carries 4 marks.

1. Define analytic function. State the necessary condition for a function $f(z)$ to be analytic at a point. Use this to check whether $f(z)=\bar{z}$ is not analytic .
2. Determine the region of the w plane in to which the first quadrant of the z plane is mapped by the transformation $w=z^{2}$.
3. Evaluate $\int_{C}(z-a)^{-1} d z$, where C is a simple closed curve and the point $z=a$ is (i) inside C (ii) out side C.
4. Let $\mathrm{H}=\{(a-3 b, b-a, a): a, b \in R\}$. Show that H is a subspace of R^{3}
5. Find a unit vector orthogonal to (1,1,1) and (1,2,-3).

Part :B

Answer any one full question from each module. Each question carries $\mathbf{2 0}$ marks.
Module- I
6 a. If $f(z)$ is an analytic function with constant modulus, then prove that $f(z)$ is a constant.
b. If $w=\phi+i \psi$ represents the complex potential of an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ determine the function ϕ.
c. Show that under the transformation $w=\frac{z-i}{z+i}$, the real axis in the z-plane is mapped into the
circle $|w|=1$.
7.a. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied at there.
b. Show that the function $u=e^{2 x}(x \cos 2 y-y \sin 2 y)$ is harmonic .Find it's harmonic conjugate and hence find the analytic function.
c. Find the bilinear transformation which maps the point $-1, i, 1$ of the z-plane on to the points $1, i,-1$ of the w-plane respectively

Module- II

8 a. Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region $0<|z-1|<1$
b. Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{z}}{(z+1)^{2}} d z$ where C is $|z-1|=3$
c. By integrating around a unit circle , evaluate $\int_{0}^{2 \pi} \frac{1}{5-4 \cos \theta} d \theta$

9 a. Discuss the singularities of (i) $\frac{1}{1-e^{z}} \quad$, (ii) $z e^{\frac{1}{z^{2}}}$
b. Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$ where C is $|z|=2$.
c. Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$

Module- III

10 a. Express $v=(2,7,-4)$ in R^{3} as a linear combination of the $u_{1}=(1,2,0), u_{2}=(1,3,2)$ and $u_{3}=(0,1,3)$
b. Find the dimension of the null space and column space of

$$
\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

11a. Show that the mapping T : $R^{3}-R^{3}$ is defined by $T(x, y, z)=(x+z, x+y+2 z, 2 x+y+3 z)$ is linear. Find a basis for the kernel of T.
b. Find a least square solution to the inconsistent system $\mathbf{A X}=\mathbf{b}$ where $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$.

Module- IV

12 a . Find an orthonormal basis for the subspace spanned by $(1,2,1),(1,0,1)$ and $(3,1,0)$ in R^{3}
b. Find a maxima or minima of $5 x_{1}^{2}+5 x_{2}^{2}-4 x_{1} x_{2}$ subject to the constraint $\mathbf{x}^{\top} \mathbf{x}=1$ where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

13.a. Reduce the quadratic form $q=8 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+12 x_{1} x_{2}-8 x_{2} x_{3}+4 x_{1} x_{3}$ to canonical form by orthogonal transformation. Examine the definiteness
b. Find a singular value decomposition of $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
\qquad

