Model Question Paper

FOURTH SEMESTER B.TECH. EXAMINATIONS

Engineering mathematics -IV

(COMPLEX ANALYSIS AND LINEAR ALGRBRA)

(Common to AFRT)

(2013 Scheme)

Time: 3Hrs

Max. Marks :100

Part A

Answer all questions. Each question carries 4 marks.

1. Define analytic function. State the necessary condition for a function f(z) to be analytic at

a point. Use this to check whether $f(z) = \overline{z}$ is not analytic.

- 2. Determine the region of the w plane in to which the first quadrant of the z plane is mapped by the
 - transformation $w = z^2$.
- **3.** Evaluate $\int_{C} (z-a)^{-1} dz$, where C is a simple closed curve and the point z=a is (i) inside C (ii)

out side C.

- **4.** Let $H = \{(a 3b, b a, a) : a, b \in R\}$. Show that H is a subspace of \mathbb{R}^3
- 5. Find a unit vector orthogonal to (1,1,1) and (1,2,-3).

Part :B

Answer any one full question from each module. Each question carries 20 marks.

Module- I

6 a. If f(z) is an analytic function with constant modulus, then prove that f(z) is a constant.

b. If $w = \phi + i\psi$ represents the complex potential of an electric field and $\psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$

determine the function ϕ .

c. Show that under the transformation $w = \frac{z-i}{z+i}$, the real axis in the z-plane is mapped into the

circle |w| = 1.

- **7.a.** Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied at there.
- **b.** Show that the function $u = e^{2x} (x \cos 2y y \sin 2y)$ is harmonic .Find it's harmonic conjugate and hence find the analytic function.
- **c.** Find the bilinear transformation which maps the point -1, i, 1 of the z-plane on to the points 1,i,-1 of the w-plane respectively

Module- II

8 a. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region 0 < |z-1| < 1.

b. Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{z}}{(z+1)^{2}} dz$ where C is |z-1| = 3

c. By integrating around a unit circle , evaluate $\int_{0}^{2\pi} \frac{1}{5 - 4\cos\theta} d\theta$

9 a. Discuss the singularities of (i) $\frac{1}{1-e^z}$, (ii) $ze^{\frac{1}{z^2}}$

b. Evaluate
$$\int_{C} \frac{e^{2z}}{(z+1)^4} dz$$
 where C is $|z| = 2$.

c. Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$

Module-III

10 a. Express v=(2,7,-4) in R³ as a linear combination of the $u_1=(1,2,0)$, $u_2=(1,3,2)$ and $u_3=(0,1,3)$

b. Find the dimension of the null space and column space of

$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

11a. Show that the mapping T: R^3-R^3 is defined by T(x, y, z)=(x+z, x+y+2z, 2x+y+3z) is linear. Find a basis for the kernel of T.

b. Find a least square solution to the inconsistent system $A\mathbf{X}=\mathbf{b}$ where $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.

Module- IV

12 a. Find an orthonormal basis for the subspace spanned by (1,2,1), (1,0,1) and (3,1,0) in R³

b. Find a maxima or minima of $5x_1^2 + 5x_2^2 - 4x_1x_2$ subject to the constraint **x**^T**x**=1 where

 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

13.a. Reduce the quadratic form $q = 8x_1^2 + 3x_2^2 + 3x_3^2 + 12x_1x_2 - 8x_2x_3 + 4x_1x_3$ to canonical form

.....

by orthogonal transformation. Examine the definiteness

b. Find a singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$