FIFTH SEMESTER B.TECH DEGREE EXAMINATION (2013 Scheme)

13.505 THEORY OF COMPUTATION (F)
 MODEL QUESTION PAPER

Time: 3 hours
Maximum marks: 100

PART-A
 Answer all questions. Each question carries 4 marks

1. Design a Moore machine which outputs $(\mathrm{N} \bmod 3)$ where N is the integer value of the binary string given as input.
2. Prove that $\mathrm{L}=\left\{0^{n} / \mathrm{n}\right.$ is a perfect square $\}$ is not regular by applying Pumping Lemma for Regular Languages.
3. What is an ambiguous CFG? Illustrate with an example.
4. Show how the language $L=\left\{w w^{R} / w\right.$ in $\left.(0+1)^{*}\right\}$ can be recognized using the features of a multitape Turing Machine.
5. Prove that if a language L and its complement are both recursively enumerable, then both L and its complement are recursive.

PART-B

Answer one full question from each module. Each question carries 20 marks

MODULE-I

6. (a) State and prove Myhill-Nerode theorem.
7. (a) Convert the following regular expression to NFA. Then convert the NFA to DFA and minimize the DFA.

$$
(0+10)^{*} 100(0+1)
$$

(b) Show that Regular Languages are closed under intersection operation.
MODULE - II
8. (a) Design a PDA which accepts $L=\left\{w w^{R} / w\right.$ in $\left.(0+1)^{*}\right\}$
(b) Write a grammar for the above language L and convert it into Chomsky Normal Form.
9. State and prove the Pumping Lemma for Context-Free languages.

MODULE - III
10. (a) Design a Turing Machine which accepts $L=\left\{a^{n} b^{n} / n>0\right\}$
(b) List the Chomsky classification of languages and grammars.
11. Design a Turing Machine which computes $\mathbf{m}-\mathrm{n}$, where m and n are integers.

MODULE - IV
12. When is a problem said to be undecidable? Explain the Post Correspondence problem.
13. What is "Universal Language"? Is it recursive? Why?

