Time: 3 hours

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Let X be infinite dimensional normed space and $A \in CL(X)$. Prove that $\sigma_a(A)$ is nonempty.
- 2. State and prove Schwarz inequality.
- 3. Let $e_n = (0, 0, \dots, 0, 1, 0, 0, \dots)$ where 1 occurs in the n^{th} place. Prove that the series $\sum_n \frac{1}{n} e_n$ is convergent in l^2 .
- 4. Let X be an inner product space and $E \subset X$ be convex. Prove that there exists at most one best approximation from E to any $x \in X$.
- 5. Let $f : \mathbb{R}^3 \to \mathbb{K}$ be defined by $f(x_1, x_2, x_3) = x_1 + 2x_2 3x_3$, $(x_1, x_2, x_3) \in \mathbb{R}^3$. Find the representor of f.
- 6. Define adjoint of an operator. Find the adjoint of $A : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $A(x_1, x_2) = (x_1 x_2, 2x_3), (x_1, x_2) \in \mathbb{R}^2$.
- 7. Let *H* be a Hilbert space and $A \in BL(H)$. If *A* is nonzero and self adjoint, prove that A^n is nonzero and self adjoint for any $n \in \mathbb{N}$.
- 8. Let H be a Hilbert space and $A \in BL(H)$ be normal. Prove that every spectral value of A is an approximate eigen value of A.

 $5 \times 3 = 15$

Part B Answer all questions from 9 to 13 Each question carries 12 marks

- 9. A a. Let X be a normed linear space and $A \in CL(X)$. Prove that every nonzero spectral value of A is an eigen value of A. 8 marks
 - b. Let $A \in CL(X)$ and $k \neq 0$. Prove that A kI is injective if and only A kI is surjective. 4 marks

OR

B a. Let X be a normed linear space and $A \in CL(X)$. Prove that the eigen spectrum and spectrum of A are countable sets and zero is the only possible limit point. 5 marks

- b. Let $A: l^p \to l^p$ defined by $A(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$. Check whether A is compact. 4 marks
- c. Prove that every eigen space of a compact operator corresponding to a nonzero eigen value is finite dimensional. 3 marks
- 10. A. a. Let H be a nonzero Hilbert space. Prove that H has a countable orthonormal basis if and only if H is separable. 8 marks
 - b. Let X be an inner product space and $x, y \in X$. Prove that x is orthogonal to y if and only if $||kx + y||^2 = ||kx||^2 + ||y||^2$ for every $k \in K$. 4 marks

OR

- B. a. State and prove Bessel's Inequality. 6 marks b. Let X and Y be inner product spaces. Prove that a linear map $F: X \to Y$ satisfies
 - $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for every $x, y \in X$ if and only if F satisfies ||F(x)|| = ||x|| for every $x \in X$. 6 marks
- 11. A. a. State and prove Riesz representation theorem. Prove that the Riesz representation theorem may not hold for an incomplete inner product space. 8 marks
 - b. Let E be a nonempty closed convex subset of a Hilbert space H. Prove that for each $x \in H$, there exists a unique best approximation from E to x. 4 marks

OR

B. a. Prove that every Hilbert space is reflexive. b. Let F be a finite dimensional subspace of an inner product space X. Prove that $X = F + F^{\perp}$. $X = F + F^{\perp}$. $X = F + F^{\perp}$.

c. Let
$$F = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + 2x_2 = 0\}$$
. Find F^{\perp} . 3 marks

- 12. A. a. Let H be a Hilbert space and $A \in BL(H)$. Prove that there exists a unique operator $B \in BL(H)$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for every $x, y \in H$. 6 marks
 - b. Let (A_n) be a sequence of operators in BL(H) such that $A_n \to A$ as $n \to \infty$. If each A_n is normal then prove that A is also normal. 3 marks
 - c. Let $A: l^2 \to l^2$ defined by $A(x_1, x_2, x_3, \dots) = (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$. Check whether A is self adjoint. 3 marks

OR

- B. a. Let *H* be a Hilbert space and $A \in BL(H)$ be self adjoint. Prove that $||A|| = \sup\{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}$ 6 marks
 - b. Let $A \in BL(H)$. Prove that R(A) = H if and only if A^* is bounded below. 6 marks
- 13. A. a. Let $A \in BL(H)$ be a compact operator. Prove that A^* is compact. 6 marks b. Let H be a Hilbert space and $A \in BL(H)$. Prove that the spectrum of A, $\sigma(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}.$ 6 marks

- B. a. Let *H* be a Hilbert space and $A \in BL(H)$. Prove that $\sigma_e(A) \subset \omega(A)$ and $\sigma(A)$ is contained in the closure of $\omega(A)$. 6 marks
 - b. Let A be a compact operator on a nonzero Hilbert space H. If A is self adjoint, then prove that ||A|| or -||A|| is an eigen value of A. 3 marks
 - c. Let H be a separable Hilbert space and $A \in BL(H)$. If A is normal, prove that $\sigma_e(A)$ is countable. 3 marks

•

 $5\times 12=60$