KERALA UNIVERSITY

Model Question Paper- M. Sc. Examination
Branch : Mathematics
MM242 - FUNCTIONAL ANALYSIS - II

Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Let X be infinite dimensional normed space and $A \in C L(X)$. Prove that $\sigma_{a}(A)$ is nonempty.
2. State and prove Schwarz inequality.
3. Let $e_{n}=(0,0, \cdots, 0,1,0,0, \cdots)$ where 1 occurs in the $n^{\text {th }}$ place. Prove that the series $\sum_{n} \frac{1}{n} e_{n}$ is convergent in l^{2}.
4. Let X be an inner product space and $E \subset X$ be convex. Prove that there exists at most one best approximation from E to any $x \in X$.
5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{K}$ be defined by $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+2 x_{2}-3 x_{3},\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Find the representor of f.
6. Define adjoint of an operator. Find the adjoint of $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $A\left(x_{1}, x_{2}\right)=$ $\left(x_{1}-x_{2}, 2 x_{3}\right), \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
7. Let H be a Hilbert space and $A \in B L(H)$. If A is nonzero and self adjoint, prove that A^{n} is nonzero and self adjoint for any $n \in \mathbb{N}$..
8. Let H be a Hilbert space and $A \in B L(H)$ be normal. Prove that every spectral value of A is an approximate eigen value of A.

$$
5 \times 3=15
$$

Part B
 Answer all questions from 9 to 13 Each question carries 12 marks

9. A a. Let X be a normed linear space and $A \in C L(X)$. Prove that every nonzero spectral value of A is an eigen value of A.
b. Let $A \in C L(X)$ and $k \neq 0$. Prove that $A-k I$ is injective if and only $A-k I$ is surjective.

4 marks

OR

B a. Let X be a normed linear space and $A \in C L(X)$. Prove that the eigen spectrum and spectrum of A are countable sets and zero is the only possible limit point. 5 marks
b. Let $A: l^{p} \rightarrow l^{p}$ defined by $A\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)$. Check whether A is compact.

4 marks
c. Prove that every eigen space of a compact operator corresponding to a nonzero eigen value is finite dimensional.

3 marks
10. A. a. Let H be a nonzero Hilbert space. Prove that H has a countable orthonormal basis if and only if H is separable.

8 marks
b. Let X be an inner product space and $x, y \in X$. Prove that x is orthogonal to y if and only if $\|k x+y\|^{2}=\|k x\|^{2}+\|y\|^{2}$ for every $k \in K$.

4 marks

OR

B. a. State and prove Bessel's Inequality.

6 marks
b. Let X and Y be inner product spaces. Prove that a linear map $F: X \rightarrow Y$ satisfies $\langle F(x), F(y)\rangle=\langle x, y\rangle$ for every $x, y \in X$ if and only if F satisfies $\|F(x)\|=\|x\|$ for every $x \in X$.

6 marks
11. A. a. State and prove Riesz representation theorem. Prove that the Riesz representation theorem may not hold for an incomplete inner product space. 8 marks
b. Let E be a nonempty closed convex subset of a Hilbert space H. Prove that for each $x \in H$, there exists a unique best approximation from E to x. 4 marks

OR

B. a. Prove that every Hilbert space is reflexive.

6 marks
b. Let F be a finite dimensional subspace of an inner product space X. Prove that $X=F+F^{\perp}$.

3 marks
c. Let $F=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+2 x_{2}=0\right\}$. Find F^{\perp}. 3 marks
12. A. a. Let H be a Hilbert space and $A \in B L(H)$. Prove that there exists a unique operator $B \in B L(H)$ such that $\langle A x, y\rangle=\langle x, B y\rangle$ for every $x, y \in H$. 6 marks
b. Let $\left(A_{n}\right)$ be a sequence of operators in $B L(H)$ such that $A_{n} \rightarrow A$ as $n \rightarrow \infty$. If each A_{n} is normal then prove that A is also normal.

3 marks
c. Let $A: l^{2} \rightarrow l^{2}$ defined by $A\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)$. Check whether A is self adjoint.

3 marks

OR

B. a. Let H be a Hilbert space and $A \in B L(H)$ be self adjoint. Prove that $\|A\|=\sup \{|\langle A(x), x\rangle|: x \in H,\|x\| \leq 1\}$

6 marks
b. Let $A \in B L(H)$. Prove that $R(A)=H$ if and only if A^{*} is bounded below. 6 marks
13. A. a. Let $A \in B L(H)$ be a compact operator. Prove that A^{*} is compact. 6 marks
b. Let H be a Hilbert space and $A \in B L(H)$. Prove that the spectrum of A, $\sigma(A)=\sigma_{a}(A) \cup\left\{k: \bar{k} \in \sigma_{e}\left(A^{*}\right)\right\}$.

6 marks

OR

B. a. Let H be a Hilbert space and $A \in B L(H)$. Prove that $\sigma_{e}(A) \subset \omega(A)$ and $\sigma(A)$ is contained in the closure of $\omega(A)$.

6 marks
b. Let A be a compact operator on a nonzero Hilbert space H. If A is self adjoint, then prove that $\|A\|$ or $-\|A\|$ is an eigen value of A.

3 marks
c. Let H be a separable Hilbert space and $A \in B L(H)$. If A is normal, prove that $\sigma_{e}(A)$ is countable.

