UNIVERSITY OF KERALA

B. TECH DEGREE COURSE
2008 SCHEME

MECHANICAL - STREAM - PRODUCTION - ENGINEERING

REGULATION, SCHEME AND SYLLABUS
(I – VIII semesters)

APPROVED BY
BOARD OF STUDIES IN ENGINEERING
AND
FACULTY OF ENGINEERING AND TECHNOLOGY
1. Conditions for Admission

Candidates for admission to the B.Tech degree course shall be required to have passed the Higher Secondary Examination, Kerala or 12th Standard V.H.S.E., C.B.S.E., I.S.C. or any examination accepted by the university as equivalent thereto obtaining not less than 50% in Mathematics and 50% in Mathematics, Physics and Chemistry/ Bio- technology/ Computer Science/ Biology put together, or a diploma in Engineering awarded by the Board of Technical Education, Kerala or an examination recognized as equivalent thereto after undergoing an institutional course of at least three years securing a minimum of 50% marks in the final diploma examination subject to the usual concessions allowed for backward classes and other communities as specified from time to time.

2. Duration of the course

i) The course for the B.Tech Degree shall extend over a period of four academic years comprising of eight semesters. The first and second semester shall be combined and each semester from third semester onwards shall cover the groups of subjects as given in the curriculum and scheme of examination

ii) Each semester shall ordinarily comprise of not less than 400 working periods each of 60 minutes duration

iii) A candidate who could not complete the programme and pass all examinations within Ten (10) years since his first admission to the B.Tech programme will not be allowed to continue and he has to quit the Programme. However he can be readmitted to the first year of the programme if he/she satisfies the eligibility norms applicable to the regular candidates prevailing at the time of readmission.

3. Eligibility for the Degree

Candidates for admission to the degree of bachelor of technology shall be required to have undergone the prescribed course of study in an institution maintained by or affiliated to the University of Kerala for a period of not less than four academic years and to have passed all the examinations specified in the scheme of study

4. Subjects of Study

The subjects of study shall be in accordance with the scheme and syllabi prescribed

5. Evaluation

Candidates in each semester will be evaluated both by continuous assessment and end semester University examination. The individual maximum marks allotted for continuous assessment and University examination for each subject is as prescribed by the scheme of study.

5.1 Continuous Assessment (C.A)

The marks awarded for the continuous assessment will be on the basis of the day-to-day work, periodic tests (minimum two in a semester) and assignments (minimum of three – one each from each module). The faculty member concerned will do the continuous assessment for each semester. The C.A. marks for the individual subjects shall be computed by giving weight age to the following parameters.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Attendance</th>
<th>Tests</th>
<th>Assignments/Class Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Subjects</td>
<td>20%</td>
<td>50%</td>
<td>30%</td>
</tr>
<tr>
<td>Drawing</td>
<td>20%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Practical</td>
<td>20%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Project Work</td>
<td>Work Assessed by Guide – 50% Assessed by a three member committee out of which one member is the guide – 50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The C.A. marks for the attendance (20%) for each theory, practical and drawing shall be awarded in full only if the candidate has secured 90% attendance or above in the subject. Proportionate reduction shall be made in the case of subjects in which he/she gets below 90% of the attendance for a subject. The CA marks obtained by the student for all subjects in a semester is to be published at least 5 days before the commencement of the University examinations. Anomalies if any may be scrutinized by the department committee and the final CA marks are forwarded to the university within the stipulated time.

5.2. End Semester University Examinations

i) There will be University examinations at the end of the first academic year and at the end of every semester from third semester onwards in subjects as prescribed under the respective scheme of examinations. Semester classes shall be completed at least 10 working days before the commencement of the University examination.

ii) The examination will be held twice in an year – April/May session (for even semester) and October/November session (for odd semester). The combined 1st and 2nd semester is reckoned as equivalent to an even semester for the purpose of conduct of examination and the University examination will be held during April/May. However VII and VIII Semester examination will be conducted in both the sessions. This schedule will not be changed.

iii) A student will be permitted to appear for the university examination only if he/she satisfies the following requirements:

a. He/she must secure not less than 75% attendance in the total number of working periods during the first year and in each semester thereafter and shall be physically present for a minimum of 60% of the total working periods. In addition, he/she also shall be physically present in at least 50% of total working periods for each subject.

b. He must earn a progress certificate from the head of the institution of having satisfactorily completed the course of study in the semester as prescribed by these regulations.

c. It shall be open to the Vice-Chancellor to grant condonation of shortage of attendance on the recommendation of the head of the institution in accordance with the following norms.

d. The attendance shall not be less than 60% of the total working periods.

e. He/she shall be physically present for a minimum of 50% of the total working periods.

f. The shortage shall not be condoned more than twice during the entire course.

g. The condonation shall be granted subject to the rules and procedures prescribed by the university from time to time.

h. The condonation for combined 1st and 2nd semesters will be reckoned as a single condonation for attendance purposes.

iv) A student who is not permitted to appear for the University examinations for a particular semester due to the shortage of attendance and not permitted by the
authorities for condonation of shortage of attendance shall repeat the semester when it is offered again. This provision is allowed only once for a semester.

v) The university will conduct examinations for all subjects (Theory, Drawing & Practical)

vi) The scheme of valuation will be decided by the chief examiner for theory / drawing subjects

vii) For practical examinations, the examiners together will decide the marks to be awarded. The student shall produce the certified record of the work done in the laboratory during the examination. The evaluation of the candidate should be as per the guidelines given in the syllabus for the practical subject.

6. Letter Grades

For each subject in a semester, based on the total marks obtained by the student in the University examination and Continuous assessment put together a letter grade (S, A+, A, B+, B, C+, C, D, E and F) will be awarded. **All letter grades except ‘F’ will be awarded if the marks for the University examination is 40 % or above and the total mark (C.A marks + University Exam mark) is 50 % or above.** No absolute mark will be indicated in the grade card. Letter grade corresponding to total marks (C.A marks + University Exam mark) and the corresponding grade point in a ten-point scale is described below.

<table>
<thead>
<tr>
<th>% of Total marks (C.A marks + University Exam mark)</th>
<th>Letter Grade</th>
<th>Grade Point (G.P)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 % and above</td>
<td>S</td>
<td>10</td>
<td>Excellent</td>
</tr>
<tr>
<td>85 % and above but less than 90%</td>
<td>A+</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>80 % and above but less than 85%</td>
<td>A</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>75 % and above but less than 80%</td>
<td>B+</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>70 % and above but less than 75%</td>
<td>B</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>65 % and above but less than 70%</td>
<td>C+</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>60 % and above but less than 65%</td>
<td>C</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>55 % and above but less than 60%</td>
<td>D</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>50 % and above but less than 55%</td>
<td>E</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Below 50% (C.A + U.E) or below 40 % for U.E only</td>
<td>F</td>
<td>0</td>
<td>Failed</td>
</tr>
</tbody>
</table>

7. Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA)

Grade point average is the semester wise average points obtained by each student in a 10-point scale. GPA for a particular semester is calculated as per the calculation shown below.

\[
GPA = \frac{\sum \text{Credit} \times \text{GP obtained for the subject}}{\sum \text{credit for subject}}
\]

Cumulative Grade point Average (CGPA) is the average grade points obtained by the students till the end of any particular semester. CGPA is calculated in a 10-point scale as shown below.

\[
CGPA = \frac{\sum \text{Credits for semester} \times \text{GPA obtained for the semester}}{\sum \text{credits for the semester}}
\]
GPA and CGPA shall be rounded to two decimal points. The Grade card issued to the
students shall contain subject number and subject name, credits for the subject, letter
grades obtained, GPA for the semester and CGPA up to that particular semester. In addition
to the grade cards for each semester all successful candidate shall also be issued a
consolidated statement grades. On specific request from a candidate and after remitting the
prescribed fees the University shall issue detailed mark to the individual candidate.

8. Minimum for a pass

a) A candidate shall be declared to have passed a semester examination in full in the
first appearance if he/she secures not less than 5.5 GPA with a minimum of ‘E’ grade
for the all individual subject in that semester.
b) A candidate shall be declared to have passed in an individual subject of a semester
examination if he/she secures grade ‘E’ or above.
c) A candidate who does not secure a full pass in a semester examination as per clause
(a) above will have to pass in all the subjects of the semester examination as per
clause (b) above before he is declared to have passed in that semester examination
in full.

9. Improvement of Grades

i) A candidate shall be allowed to re-appear for a maximum of two subjects of a semester
examination in order to improve the marks and hence the grades already obtained
subject to the following conditions

a) The candidate shall be permitted to improve the examination only along with next
available chance.
b) The candidate shall not be allowed to appear for an improvement examination for
the subjects of the VII & VIII semesters
c) The grades obtained by the candidate for each subject in the improvement chance
he has appeared for or the already existing grades – whichever is better will be
reckoned as the grades secured.
d) First & Second semester will be counted as a single chance and they can improve
a maximum of three subjects

ii) A candidate shall be allowed to repeat the course work in one or more semesters in order
to better the C.A. marks already obtained, subject to the following conditions

a) He/she shall repeat the course work in a particular semester only once and that too
at the earliest opportunity offered to him/her.
b) He/she shall not combine this course work with his/her regular course work
c) He/she shall not be allowed to repeat the course work of any semester if he has
already passed that semester examination in full
d) The C.A marks obtained by the repetition of the course work will be considered for all
purposes

iii) A candidate shall be allowed to withdraw from the whole examination of a semester in
accordance with the rules for cancellation of examination of the University of Kerala.

10. Classification of Successful candidates

i) A candidate who qualifies for the degree passing all the subjects of the eight semesters
within five academic years (ten consecutive semesters after the commencement of
his/her course of study) and secures not less than 8 CGPA up to and including eighth
semester (overall CGPA) shall be declared to have passed the B.Tech degree
examination in FIRST CLASS WITH DISTINCTION
ii) A candidate who qualifies for the degree passing all the subjects of the eight semesters within five academic years (ten consecutive semesters after the commencement of his/her course of study) and secures less than 8 CGPA but not less than 6.5 CGPA up to and including eighth semester shall be declared to have passed the B.Tech degree examination in FIRST CLASS.

iii) All other successful candidates shall be declared to have passed the B.Tech Degree examination in SECOND CLASS.

iv) Successful candidates who complete the examination in four academic years (Eight consecutive semesters after the commencement of the course of study) shall be ranked branch-wise on the basis of the CGPA in all eight semesters put together. In the case of a tie in the CGPA the total marks of the students who have got same CGPA shall be considered for finalizing the rank. Students who pass the examination in supplementary examination are also covered under this clause.

11. Educational Tour

a) The students may undertake one educational tour preferably after fourth semester of the course and submit a tour report.

b) The tour may be conducted during the vacation / holidays taking not more than 5 working days, combined with the vacation / holidays if required. Total number of Tour days shall not exceed 15 days.

c) The tour period shall be considered as part of the working periods of a semester.

12. Revision of Regulations

The university may from time to time revise, amend or change the regulations, curriculum, scheme of examinations and syllabi. These changes unless specified otherwise, will have effect from the beginning of the academic year / semester following the notification of the University.
SCHEME AND SYLLABUS

MECHANICAL - STREAM - PRODUCTION - ENGINEERING

Combined I and II Semesters, 2008 scheme
(Common for all branches)

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.101</td>
<td>Engineering Mathematics</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.102</td>
<td>Engineering Physics</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.103</td>
<td>Engineering Chemistry</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.104</td>
<td>Engineering Graphics</td>
<td>L 1 T 0 D/P 2</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.105</td>
<td>Engineering Mechanics</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.106</td>
<td>Basic Civil Engineering</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.107</td>
<td>Basic Mechanical Engineering</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.108</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.109</td>
<td>Basic Communication and Information Engineering</td>
<td>L 2 T 1 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>08.110</td>
<td>Engineering Workshops</td>
<td>L 0 T 0 D/P 2</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L 17 T 8 D/P 4</td>
<td></td>
<td>500</td>
<td>1000</td>
<td>58</td>
</tr>
</tbody>
</table>

The subject 08.109 will be handled by the Department of Electronics and Communication Engineering.

Semester III

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.301</td>
<td>Engineering Mathematics – II (CMPUNERFHBTA)</td>
<td>L 3 T 1 D/P -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.302</td>
<td>Humanities (MPUE)</td>
<td>L 3 T 0 D/P 0</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>08.303</td>
<td>Fluid Mechanics and Machines (MPU)</td>
<td>L 4 T 1 D/P -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>08.304</td>
<td>Mechanics of Solids (MPU)</td>
<td>L 3 T 1 D/P -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.305</td>
<td>Mechanical Engineering</td>
<td>L 3 T 1 D/P -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.306</td>
<td>Engineering Drawing (MPU) Part A - Machine Drawing</td>
<td>L 0 T 2 D/P 25</td>
<td>25</td>
<td>4</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Part B - Civil Drawing & Estimation</td>
<td></td>
<td></td>
<td></td>
<td>(50+50)</td>
<td></td>
</tr>
<tr>
<td>08.307</td>
<td>Civil Engineering Lab. (MPU)</td>
<td>L 0 T 2 D/P 50</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>08.308</td>
<td>Fluid Mechanics Lab</td>
<td>L 0 T 2 D/P 50</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>L 17 T 4 D/P 8</td>
<td>400</td>
<td>-</td>
<td>800</td>
<td>29</td>
</tr>
</tbody>
</table>
Semester IV

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.401</td>
<td>Engineering Mathematics – III (CMPUNERFHB)</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.402</td>
<td>Computer Programming & Numerical Methods (MNPU)</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.403</td>
<td>Metallurgy & Material Science (MP)</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.404</td>
<td>Production Process-I</td>
<td>2 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>08.405</td>
<td>Machine Tools-I</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.406</td>
<td>Production Drawing</td>
<td>0 0 4</td>
<td>50</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.407</td>
<td>ME Lab</td>
<td>0 0 3</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>08.408</td>
<td>Machine Tools lab</td>
<td>0 0 3</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14 5 10</td>
<td>400</td>
<td>-</td>
<td>800</td>
<td>29</td>
</tr>
</tbody>
</table>

Semester V

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.501</td>
<td>Engineering Mathematics – IV [CMPU]</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.502</td>
<td>Electrical Technology [MPU]</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.503</td>
<td>Theory of Machine [MP]</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.504</td>
<td>Industrial Electronics [MP]</td>
<td>2 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>08.505</td>
<td>Production Process II</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.506</td>
<td>Elective I</td>
<td>3 1 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>08.507</td>
<td>Production Process Lab</td>
<td>0 0 3</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>08.508</td>
<td>Electrical and Electronics Lab [MPU]</td>
<td>0 0 3</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17 6 6</td>
<td>400</td>
<td>-</td>
<td>800</td>
<td>29</td>
</tr>
</tbody>
</table>

The subject 08.504 will be handled by the Department of Electronics and Communication Engineering.
Semester VI

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.601</td>
<td>Metrology and Instrumentation [MP]</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.602</td>
<td>Dynamics of Machinery [MP]</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.603</td>
<td>Computer Aided Design [MPU]</td>
<td>2 1 -</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08.604</td>
<td>Machine Tools II</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.605</td>
<td>Machines Theory and Design</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.606</td>
<td>Elective – II</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.607</td>
<td>CAD Lab</td>
<td>0 0 3</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08.608</td>
<td>Metallurgy and Metrology Lab</td>
<td>0 0 3</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17 6 6</td>
<td>400 -</td>
<td>800</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Semester VII

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.701</td>
<td>Principles of Management and Decision Modeling [MPU]</td>
<td>2 1 -</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08.702</td>
<td>Mechatronics [MPU]</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.703</td>
<td>Computer Integrated Manufacturing Systems</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.704</td>
<td>Theory of Metal cutting</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.705</td>
<td>Machine Tool Design</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.706</td>
<td>Elective III</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.707</td>
<td>Production Tooling Lab</td>
<td>0 0 2</td>
<td>50 3</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>08.708</td>
<td>CIM Lab</td>
<td>0 0 2</td>
<td>50 3</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>08.709</td>
<td>Project & Seminar [MPU]</td>
<td>0 0 2</td>
<td>100 -</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17 6 6</td>
<td>500 -</td>
<td>800</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Semester VIII

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Weekly load, hours</th>
<th>Max sessional marks</th>
<th>Exam Dur Hrs</th>
<th>Exam max marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.801</td>
<td>Energy Management [MPU]</td>
<td>2 1 -</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08.802</td>
<td>Industrial Engineering [MPU]</td>
<td>2 1 -</td>
<td>50 3</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08.803</td>
<td>Tool Engineering</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.804</td>
<td>Product Development and Design</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.805</td>
<td>Elective IV</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.806</td>
<td>Elective V</td>
<td>3 1 -</td>
<td>50 3</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>08.807</td>
<td>Industrial Seminar [MPU]</td>
<td>0 0 2</td>
<td>50 -</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>08.808</td>
<td>Project & Viva voce [MPU]</td>
<td>0 0 5</td>
<td>150 -</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16 6 7</td>
<td>500 -</td>
<td>700</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
ELECTIVE SECTION

LIST OF ELECTIVES

(Electives are common to Mechanical, Production and Automobile Engineering branches unless otherwise specified in the title)

08. 506 Elective I

1. Communicative English and technical writing
2. Human aspects of management
3. Disaster Management
4. Glimpses of world thought
5. Professional ethics and human values
6. Environmental Science
7. Advanced Welding technology
8. Foundry Technology
9. Environmental Pollution Control
10. Advanced Fluid Mechanics
11. Composite Materials Technology
12. Internet Technologies
13. Non Destructive Testing
14. Powder Metallurgy
15. Vehicle Transport & Fleet Management
16. Automotive Air-conditioning
17. Two And Three Wheeled Vehicles

08.606 Elective II

1. Advanced mechanics of solids
2. New Energy systems
3. Object Oriented Programming
4. Nuclear Engineering
5. Mechanical working Methods
6. Artificial Intelligence Systems
7. System Modeling & Simulation
8. Instrumentation and control
9. Materials Handling
10. Agro Machinery
11. Total Quality Management
12. Precision Engineering
13. Advanced Manufacturing Processes
14. Material Characterisation
15. Micromachining Methods
16. Tool Engineering (MU)
17. Vehicle Body Engineering
18. Vehicle Performance And Testing
19. Automotive Fuels & Alternate Fuels

08.706 Elective III

1. Computer Graphics
2. Advanced Thermodynamics
3. Industrial Heat Transfer
4. Plant Engg & Maintenance
5. Fracture Mechanics
6. Marketing Management
7. Entrepreneurship Development
8. Industrial Hydraulics
9. Finite Element Methods
10. Metal Forming
11. Machine tool Technology
12. Non-conventional Machining Techniques
13. Turbo Machines
14. Experimental Methods in Engineering
16. Failure Analysis
17. Theory of Machining (MU)
18. Bio Materials
19. Concurrent Engineering
20. Industrial Automation
21. Alternate Energy Sources
22. Automotive Pollution and Control
23. Creativity, Innovation and New Product Development

15
<table>
<thead>
<tr>
<th>08. 805 Elective IV</th>
<th>08. 806 Elective V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Experimental Stress Analysis Techniques</td>
<td>1. Propulsion Engineering</td>
</tr>
<tr>
<td>2. Aerospace Engineering</td>
<td>2. Industrial Refrigeration</td>
</tr>
<tr>
<td>3. Facilities Planning</td>
<td>3. Industrial Quality Control</td>
</tr>
<tr>
<td>5. Non linear Dynamics and Chaos</td>
<td>5. Creativity & Product Development</td>
</tr>
<tr>
<td>7. Multiphase flow</td>
<td>7. Random vibrations</td>
</tr>
<tr>
<td>8. Controls in Machine tools</td>
<td>8. Advanced Kinematics of Machines</td>
</tr>
<tr>
<td>10. Tribology</td>
<td>10. Flexible Manufacturing Methods</td>
</tr>
<tr>
<td>11. Value Engineering.</td>
<td>11. Computational Fluid Dynamics</td>
</tr>
<tr>
<td>12. Software Engineering</td>
<td>12. Technology Forecasting</td>
</tr>
<tr>
<td>15. Thermal Management of Electronic Systems</td>
<td></td>
</tr>
<tr>
<td>16. Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>17. Product and brand management</td>
<td></td>
</tr>
<tr>
<td>18. Research Methodology</td>
<td></td>
</tr>
<tr>
<td>19. Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>20. Automotive Technology (P)</td>
<td></td>
</tr>
<tr>
<td>21. High Temperature Materials</td>
<td></td>
</tr>
<tr>
<td>22. Industrial Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>23. Engineering Design</td>
<td></td>
</tr>
<tr>
<td>24. Tractors & Farm Equipments</td>
<td></td>
</tr>
<tr>
<td>25. Embedded System In Automobiles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MODULE- 1

Applications of differentiation:– Definition of Hyperbolic functions and their derivatives- Successive differentiation- Leibnitz’ Theorem(without proof)- Curvature- Radius of curvature- centre of curvature- Evolute (Cartesian,polar and parametric forms)

Partial differentiation and applications:– Partial derivatives- Euler’s theorem on homogeneous functions- Total derivatives- Jacobians- Errors and approximations- Taylor’s series (one and two variables) - Maxima and minima of functions of two variables - Lagrange’s method- Leibnitz rule on differentiation under integral sign.

Vector differentiation and applications:– Scalar and vector functions- differentiation of vector functions-Velocity and acceleration- Scalar and vector fields- Operator ∇ - Gradient- Physical interpretation of gradient- Directional derivative- Divergence- Curl- Identities involving ∇ (no proof) - Irrotational and solenoidal fields – Scalar potential.

MODULE-II

Laplace transforms:– Transforms of elementary functions - shifting property- Inverse transforms- Transforms of derivatives and integrals- Transform functions multiplied by t and divided by t - Convolution theorem(without proof)-Transforms of unit step function, unit impulse function and periodic functions-second shifting theorem- Solution of ordinary differential equations with constant coefficients using Laplace transforms.

Differential Equations and Applications:– Linear differential equations with constant coefficients- Method of variation of parameters - Cauchy and Legendre equations – Simultaneous linear equations with constant coefficients- Application to orthogonal trajectories (cartesian form only).

MODULE-III

REFERENCES
2. Peter O’ Neil ; Advanced Engineering Mathematics, Thomson
5. Michel D Greenberg; Advanced Engineering Mathematics,Pearson International
MODULE-I

Electromagnetic Theory: Del operator – grad, div, curl and their physical significance. Concept of displacement current. Deduction of Maxwell’s equations. Prediction of electromagnetic waves. Transverse nature of electromagnetic waves. \(\mathbf{E} \) and \(\mathbf{H} \) are at right angles. Poynting’s theorem (qualitative only)

MODULE- II

MODULE – III

formula. Free electrons in a metal as a Fermi gas. Fermi energy.

REFERENCE:

1. Sears & Zemansky; *University Physics, XI Edn.;* Pearson
2. Frank & Leno; *Introduction to Optics, III Edn.,* Pearson
3. J.C. Upadhyaya; *Mechanics,, Ram Prasad & Sons*
4. David J Griffiths; *Introduction to Electrodynamics, III Edn.,* Pearson
5. M Ali Omar; *Elementary Solid State Physics,, Pearson*
6. S O Pillai; *Solid State Physics,, New Age International Publishers*
7. John R Taylor, Chris D Zafiratos & Michael A Dubson; *Modern Physics for Scientists and Engineers, II Edn, Prentice Hall of India*
8. Eugene Hecht; *Optics, IV Edn, Pearson*
9. Robert Resnick; *Introduction to Special Relativity,, John Willey and Sons*
10. Richard L Liboff; *Introduction to Quantum Mechanics, IV Edn, Pearson*
11. Donald A Mcquarrie; *Statistical Mechanics,, Vivo Books*
12. Mark Ratner& Daniel Ratner; *Nanotechnology.*

LIST OF DEMONSTRATION EXPERIMENTS

2. Air Wedge – Diameter of a thin wire
5. Laser – Diffraction at a narrow slit.
6. Laser – Diffraction at a straight wire or circular aperture.
11. Computer stimulation – study of E & H. (Gauss’ law & Ampere’s law)

Pattern of Question Paper

University examination is for a maximum of 100 marks, in 3 hour duration. The syllabus is spread in 3 modules. The question paper will consist of two parts (A and B).

Part A contains short answer questions for 40 marks. This part contains 10 questions without any choice, each of 4 marks (uniformly taken from all modules).

Part B contains long answer questions for 60 marks. From each module, this part contains 3 questions out of which 2 are to be answered, each of 10 marks. Long answer questions from all the 3 modules will form 60 marks.
MODULE-1

Corrosion and its control- Theories of corrosion (chemical corrosion and electrochemical corrosion)- Galvanic series- Types of corrosion (Concentration cell corrosion, Stress corrosion, Galvanic corrosion) - Factors affecting corrosion (nature of metal and nature of environment) and different methods of corrosion control (corrosion inhibitors, cathodic protection). (5hrs)

Protective coatings- Metallic coatings- Chemical conversion coatings- paint (4hrs)

MODULE-2

Water treatment- Types of hardness- Degree of hardness- Related problems- Estimation of hardness- by EDTA method- Sludge and scales in boilers- Priming and foaming- Boiler corrosion-Water softening methods, Lime-soda process, Ion exchange methods-Internal treatments (colloidal, carbonate, phosphate and calgon conditioning)- Domestic water treatment- Methods of disinfection of water-Desalination process (Reverse osmosis, electro dialysis- Distillation). (12hrs)

Environmental damages and prevention- Air pollution- CFCs and ozone depletion-Alternative refrigerents-Green house effect-Water pollution- BOD and COD- Waste water treatment- Aerobic - Anaerobic and USAB processes. (3hrs)

Thermal methods of analysis- Basic principles involved in Thermo gravimetry, Differential thermal analysis and applications. (2hrs)

Spectroscopy- Molecular energy levels-Types of molecular spectra- Electronic spectra (Classification of electronic transitions- Beer Lambers law, Vibrational spectra (mechanism of interaction and application), Rotational spectra (Determination of bond length and application). NMR spectra (Basic principle, chemical shift, spin-spin splitting) (6hrs)

Chromatography- General principles- High performance liquid chromatography- Gas chromatography. (2hrs)

MODULE-3

Polymers- Classifications- Mechanism of polymarisation (Addition, free radical, cationic, anionic and coordination polymarisation)- Thermoplastics and thermosetting plastics- Compounding of plastics-Moulding techniques of plastics (Compression, Injection, Transfer and Extrusion moulding)-Preparation, properties and uses of PVC, PVA, PMMA, Nylon, PET, Bakelite, Urea formaldehyde resin- Silicon polymers- Biodegradable plastics. Elastomers- structure of natural rubber- vulcanisation- synthetic rubbers (Buna-S, Butyl rubber and Neoprene) (12hrs)

Organo electronic compounds -Super conducting and conducting organic materials like Polyaniline, polyacetylene and [polypyrrol and its applications. (2hrs)
Fuels- Calorific value- HCV and LCV-Experimental determination of calorific value- Theoretical calculation of calorific value by Dulong's formula - Bio fuels - Bio hydrogen and Bio-diesel (5hrs)
Lubricants- Introduction-Mechanism of lubrication- solid and liquid lubricant- Properties of lubricants- Viscosity index- flash and fire point- cloud and pour point- aniline value. (4hrs)
Cement- Manufacture of Portland cement- Theory of setting and hardening of cement (2hrs)

LAB-EXPERIMENTS (DEMONSTRATION ONLY)
1. Estimation of total hardness in water using EDTA.
2. Estimation of chloride ions in domestic water.
3. Estimation of dissolved oxygen.
4. Estimation of COD in sewage water.
5. Estimation of available chlorine in bleaching powder.
8. Determination of flash and fire point of a lubricating oil by Pensky Marten's apparatus.
12. Determinations of PH using glass electrode and quinhydrion electrode.

REFERENCES
1. H.A. Willard, L.L. Merrit and J.A. Dean; *Instrumental methods of analysis*
2. A.K. De; *Environmental Chemistry*
3. K.J. Klauhunde; *Nanoscale materials in chemistry*
4. B.R. Gowariker; *Polymer science*
5. B.W. Gonser; *Modern materials*
6. V. Raghavan; *Material Science and engineering. A first course*
7. L.H. Van Vlack; *Elements of Material science and Engineering*
8. J.W. Goodby; *Chemistry of liquid crystals*
9. S. Glasstone; *A text book of physical chemistry*
10. P.C. Jain; *Engineering Chemistry*
11. Juhaina Ahad; *Engineering Chemistry*
12. Shashi Chawla; *A text book of Engineering Chemistry*
13. R. Gopalan, D. Venkappayya & S. Nagarajan; *Engineering Chemistry*
14. J.C. Kuriakose and J. Rajaram; *Chemistry of Engineering and Technology volume I & II*
INTRODUCTION: Introduction to technical drawing and its language. Lines, lettering, dimensioning, scaling of figures, symbols and drawing instruments. (1 sheet practice)

MODULE I

PLAIN CURVES: Conic sections by eccentricity method. Construction of ellipse: (i) Arc of circles method (ii) Rectangle method (ii) Concentric circles method. Construction of parabola (i) Rectangle method (ii) Tangent method. Construction of hyperbola (i) Arc of circles method (ii) given ordinate, abscissa and the transverse axis (iii) given the asymptotes and a point on the curve. Construction of Tangent and Normal at any point on these curves

MISCELLANEOUS CURVES: Construction of Cycloid, Epicycloid and Hypocycloid, Involute of a circle. Archimedian spiral, Logarithmic spiral and Helix. Construction of Tangent and Normal at any point on these curves

PROJECTION OF POINTS AND LINES: Types of projections, Principles of Orthographic projection. Projections of points and lines. Determination of true length, inclination with planes of projection and traces of lines.

MODULE II

PROJECTION OF SOLIDS: Projection of simple solids such as prisms, pyramids, cone, cylinder, tetrahedron, octahedron, sphere and their auxiliary projections.

SECTIONS OF SOLIDS: Types of cutting planes, section of simple solids cut by parallel, perpendicular and inclined cutting planes. Their projections and true shape of cut sections.

DEVELOPMENT OF SURFACES: Development of surfaces of (i) simple solids like prisms, pyramids, cylinder and cone (ii) Cut regular solids.

MODULE III

ISOMETRIC PROJECTION: Isometric scale, Isometric view and projections of simple solids like prisms, pyramids, cylinder, cone sphere, frustum of solids and also their combinations.

INTERSECTION OF SURFACES: Intersection of surfaces of two solids as given below.
 (i) Cylinder and cylinder
 (ii)Prism and prism.
 (iii)Cone and Cylinder
(Only cases where the axes are perpendicular to each other and intersecting with or without offset.)

CAD: Introduction to CAD systems, Benefits of CAD, Various Soft wares for CAD, Demonstration of any one CAD software.

General Note:
 (i) First angle projection to be followed
(ii) Question paper shall contain 3 questions from each module, except from CAD. Students are required to answer any two questions from each module.

(iii) Distribution of marks

<table>
<thead>
<tr>
<th>Module</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module-I</td>
<td>2 x 16 = 32</td>
</tr>
<tr>
<td>Module-II</td>
<td>2 x 17 = 34</td>
</tr>
<tr>
<td>Module-III</td>
<td>2 x 17 = 34</td>
</tr>
</tbody>
</table>

100

REFERENCES

1. Luzadder and Duff; *Fundamentals of Engineering Drawing*
2. N. D. Bhatt; *Engineering Drawing*
3. K. Venugopal; *Engineering Drawing and Graphics*
4. P.S. Gill; *Engineering Graphics*
5. P.I. Varghese; *Engineering Graphics*
6. K.R. Gopalakrishnan; *Engineering Drawing*
7. Thamaraselvi; *Engineering Drawing*
8. K.C. John; *Engineering Graphics*
9. K.N. Anil Kumar; *Engineering Graphics*
MODULE I (20 HRS)

Idealizations of Mechanics- Elements of vector algebra

Statics of rigid bodies-Classification of force systems- principle of transmissibility of a force-composition and resolution- Resultant and Equilibrant of coplanar concurrent force systems-various analytical methods- Lami’s theorem, method of resolution- Conditions of equilibrium-

Moment of a force, couple, properties of couple- Varignon’s theorem- Resultant and equilibrant of coplanar non-concurrent force systems- Conditions of equilibrium. Equilibrium of rigid bodies-free body diagrams.(simple problems)

Types of supports - types of beams - types of loading- Support reactions of simply supported and overhanging beams under different types of loading.

Forces in space, equations of equilibrium, Vector approach.

MODULE II (20 HRS)

Properties of surfaces- centroid of composite areas- Theorems of Pappus-Gouldinus-

Moment of inertia of areas, Parallel and perpendicular axes theorems- Radius of Gyration-

moment of inertia of composite areas.

Dynamics: Kinematics-Combined motion of translation and rotation-instantaneous centre, motion of link, motion of connecting rod and piston, wheel rolling without slipping.

Relative velocity - basic concepts-analysis of different types of problems

Kinetics- Newton’s laws of translatory motion- D’Alembert’s principle- Motion of lift- Motion of connected bodies.

MODULE III (20 HRS)

Collision of elastic bodies-Law of conservation of momentum-Direct and oblique impact between elastic bodies and impact with fixed plane.

Curvilinear motion- D’Alembert’s principle in curvilinear motion- Mass moment of inertia of rings, solid discs and solid spheres (no derivations required)Angular momentum-Angular impulse.

Kinetics of rigid bodies under combined translatory and rotational motion – work – energy principle for rigid bodies.

Centrifugal and centripetal forces – motion of vehicles on curved paths in horizontal and vertical planes – super elevation – stability of vehicles moving in curved paths (qualitative ideas only).

REFERENCES:

Note
Question For University Examination:- Part A – 8 compulsory questions covering entire syllabus, 5 marks each. (5 x 8 = 40) Part B – Three questions of 10 marks from each module, out of which two should be answered (10 x 2 x 3 = 60).
MODULE I

Surveying: Object and Principles of Surveying.
Linear Measurements: Direct measurements - Tape & chain only - Ranging out survey lines - Taking measurements of sloping ground - Errors - Tape correction (problems).
Levelling: Levelling instruments - Level (Dumpy Level, Tilting Level) - Levelling Staff.
Measurements in levelling - Temporary adjustments of a level, holding the staff, reading the staff - Principles of leveling - recording measurements in the field book - reduction of level - height of collimation method only (simple examples).
Contour maps (Brief description only). Computation of areas - Mid ordinate rule, average ordinate rule, Trapezoidal rule, Simpson’s rule (examples)- Introduction to Distomat, Total Station & GPS (Brief description only)

MODULE II

Building construction: Selection of site for buildings - types of buildings - Components of buildings.
Foundation: Different types - Spread footing, Isolated footing, Combined footing, Mat foundation, Pile foundation (description only).
Safe Bearing Capacity of Soil: Importance of determination of the Safe Bearing Capacity of Soil (brief description only).
Super structure: Masonry - stone masonry, brick masonry –Types- desirable qualities of stone and brick.
Partition: Materials used for making partition - plywood, particle boards & glass.
Doors, windows & ventilators : Types - materials used for the construction of doors and windows - wood, steel & Aluminium.
Plastering: Mortar – properties - Preparation of Cement mortar

MODULE III

Concrete: Ingredients- cement, aggregate, and water. Qualities of ingredients (brief description only).
Tests on Cement - consistency, initial and final setting times. Compressive strength -IS Specifications.
Aggregates – desirable qualities of fine and coarse aggregates
Steel-common types used in construction- Mild Steel, HYSD Steel and their properties.
Reinforced Cement Concrete (RCC)-advantages of RCC over Plain Cement Concrete.
Elementary ideas on pre-cast and pre-stressed concrete constructions.
Building services – vertical transportation – stairs – types, escalators and elevators, ramps (brief description only). Plumbing services- brief description of water supply and sewage disposal arrangements for residential buildings.
REFERENCE:

8. Jha and Sinha, “Construction and Technology”
10. Santha Minu, “Basic Civil Engineering” Karunya Publications, Trivandrum

Note: The question paper will consist of two parts. Part I and part II.

Part I is Compulsory covering the entire syllabus, for 40 marks. It contains 8 questions of 5 marks each.

Part II is to cover 3 modules. There will be two questions (20 marks each) from each module out of which one from each module is to be answered. (20 X 3 = 60)
08.107 BASIC MECHANICAL ENGINEERING
L-T-P: 2-1-0 Credit: 6

MODULE I

Thermodynamics : Basic concepts and definitions of Zeroth law, First law, Second law of thermodynamics- concept of reversibility and entropy. p-v and T-s diagrams
Air cycles: Carnot, Otto and Diesel cycles-Air standard efficiency (simple problems)
IC Engines: Working and comparison of two stroke and four stroke petrol and diesel engines - general description of various systems using block diagrams – air system, fuel system, ignition system and governing system. A brief description of CRDI, MPFI, GDI and Hybrid Vehicles
Steam boilers: Classification – Cochran boiler, Babcock and Wilcox boiler, Benson boiler-fluidized bed combustion,

MODULE II

Principles and fields of application of - compressors - reciprocating and centrifugal, blower, pumps- reciprocating, centrifugal and jet pumps, steam and hydraulic turbines- impulse and reaction, gas turbine cycles- open and closed
Elementary ideas of hydro electric, thermal and nuclear power plants
Refrigeration & Air Conditioning: Refrigerants, CFC free refrigerants. Vapor compression refrigeration system, Comfort and Industrial air conditioning-typical window air conditioning unit (general description only).

MODULE III

Mechanical Power transmission systems: Belt, rope and gear drives-types, comparison and fields of application-velocity ratio-slip (simple problems) friction disc, single plate clutch, gear trains (no derivations).
Manufacturing processes: Elementary ideas of casting, forging, rolling, welding, soldering and brazing
Machining processes- turning, taper turning, thread cutting, shaping, drilling, grinding, milling (simple sketches and short notes).
Non conventional machining - Electro discharge machining (EDM) and Electro chemical machining (ECM)
Principle, application and advantages of C N C machine

REFERENCES
2. Gill, Smith and Zuirys, “Fundamentals of IC Engines”
3. Amstead, Ostwald and Begeman, “Manufacturing processes”
5. Roy and Choudhary, “Elements of Mechanical Engineering”
6. Hajra Choudhary, “Workshop Technology”
7. R K Bensal, “Fluid mechanics and machines”

Note: Lectures are to be supplemented by demonstration in laboratories.

Note: The question paper will consist of two parts. Part I is to be compulsory for 40 marks. This may contain 10 questions of 4 marks each. Part II is to cover 3 modules. There can be 3 questions from each module (10 marks each) out of which 2 are to be answered.
MODULE – I

Alternating current fundamentals - generation of alternating currents – waveforms - frequency - period - average and rms values - form factor. Phasor representation of alternating quantities - rectangular polar and exponential forms.

Analysis of simple ac circuits – concept of impedance and admittance - phasor representation - j notation - power and power factor in ac circuits - active and reactive components. Solution of RL, RC and RLC series circuits.

Three phase systems - generation of three phase voltage - star and delta connection - relation between phase and line values of voltage and current - phasor representation - three wire and four wire systems.

Measurement of power in three phase circuits (two wattmeter method). Measurement of energy – working of 1-phase energy meter.

MODULE – II

Transformers - Principle of operation - EMF equation - constructional details of single phase and three phase transformers

Methods of bulk generation of electric power. Block schematic of layout of generating stations - hydroelectric, thermal and nuclear power plants. Renewable energy sources - solar, wind, tidal, wave and geothermal energy.

Bulk transmission of electric power - typical electrical power transmission scheme - need for high transmission voltage - substations - substation equipments. Primary and secondary transmission and distribution systems

Different methods of wiring for LT installations. Schematic layout of LT switchboards.

Earthing of installations - necessity of earthing - plate and pipe earthing. Protective fuses, MCBs, ELCBs and switches.

Working of incandescent lamps, -fluorescent lamps, energy efficient lamps

MODULE – III

Diodes - PN junction diodes,. V-I characteristics, dynamic & static resistance, principle of working and V-I characteristics of Zener diode, principle of Photo diode, Solar cell, & LED.

Rectifiers & power supplies - block diagram description of a dc power supply, circuit diagram & working of half-wave & full wave rectifier, final equations of Vrms, Vdc, ripple factor and peak inverse voltage in each case, principle of working of series inductor and shunt capacitor filters. Working of simple zener voltage regulator. Power devices – V-I characteristics and applications of SCR and Triac. Working principle of UPS and SMPS.

Transducers – Resistance strain guage, thermistor, LVDT

REFERENCES

Note: The question paper will consist of two parts. Part – A is to be compulsory for 40 marks (10 questions of 4 marks each). Part-B is to cover 3 modules for 60 marks. (50% choice- One out of two or two out of four from each module).
MODULE 1 (Qualitative Treatment)

(a) Bipolar junction transistors: NPN & PNP transistors, structure, typical doping, working of NPN transistor, concepts of common base, common emitter & common collector configurations, current gain of each, input & output characteristics of common emitter configuration, comparison of three configurations with reference to voltage & current gain, input & output resistances and applications. (6 hrs)

(b) Field effect Transistors: basic principles of JFET, MESFET and MOSFET, comparison with BJT. (3 hrs)

(c) Amplifiers & Oscillators: circuit diagram & working of common emitter amplifier, function of each component in the circuit, need of proper biasing, frequency response, voltage gain and 3dB bandwidth, concepts of class A, B, AB and Class C power amplifiers, circuit diagram & working of push pull amplifiers, concepts of feedback, working principles of oscillators, circuit diagram & working of RC phase shift oscillator (7 hrs)

(d) Integrated circuits: advantages of ICs, analog and digital ICs, functional block diagram of operational amplifier, ideal operational amplifier, use as inverting amplifier, non inverting amplifier, summing amplifier, integrator and comparator. (4 hrs)

(e) Digital ICs: logic gates, realization of logic functions, principle of combinational and sequential logic circuits, flip flop (JK), logic families: TTL and CMOS Logic (No internal diagram) (4 hrs)

(f) IC fabrication: purification of silicon, crystal growth, wafer preparation, unit process: oxidation, diffusion, ion implantation, epitaxy, deposition, photolithography. (4 hrs)

MODULE 2 (Qualitative Treatment)

(a) Measurements: principle and block diagram of analog and digital multimeter, working principle of CRT, block diagram of CRO, measurements using CRO, principle of digital storage oscilloscope, principle and block diagram of function generator. (5 hrs)

(c) Color television: TV Standards, interlaced scanning, block diagram of PAL TV transmitter & receiver, basic principles of cable TV, CCTV system, basic principles of HDTV, basic principles of LCD & Plasma displays. (5 hrs)

(d) Radar and navigation: principle of radar and radar equation, block schematics of pulsed radar, factors affecting range, applications of radar in measurements and navigation. (4 hrs)

(e) Satellite communication: microwave frequency bands, concept of geo-stationary satellite, frequency bands used, satellite transponder, block diagram of earth station transmitter & receiver, advantages of satellite communication, principle of Global Positioning System (GPS). (3 hrs)

(f) Optical communication: block diagram of the optical communication system, principle of light transmission through fiber, concepts of Single Mode and Multi Mode optical fiber, working principle of source (semiconductor Laser) & detector (PIN, APD), advantages of optical communication. (5 hrs)
MODULE 3 (Qualitative Treatment)

(a) Computer Architecture: functional units: basic concept of ALU- data path and control, memory hierarchy, caches, main memory, virtual memory, operating systems, microprocessors - functional block diagram of 8085 (9 hrs)
(b) Data communication: overview, analog and digital data transmission, transmission media, digitization of wave forms, PCM, digital modulation techniques- ASK, PSK, FSK, basic concepts of error detection, parity checking. (6hrs)
(c) Mobile communication: basic principles of cellular communications, concepts of cells, frequency reuse, principle and block diagram of GSM, principle of CDMA, WLL & GPRS technologies. (4hrs)
(d) Internet Technology: concepts of networking: client - server computing, IP addresses, domain names, network interface unit- modem, switching technologies- circuit switching and packet switching, LAN, MAN, WAN & World wide web, network topologies, communication protocols- TCP/IP, Introduction to web languages- HTML, XML, internetworking concepts, network devices- basic principles of router, bridge, switch, network security- Firewall. (7 hrs)

REFERENCES
1. Santiram Kal, Basic Electronics – Devices, Circuits and IT fundamentals, PHI
4. M.Moris Mano, Computer Architecture, PHI
5. Neil H E Weste, Kamran Eshraghian, Principles of CMOS VLSI design – A system perspective, Pearson Education [Module 1(f)]
6. David A. Bell, Electronic Instrumentation and Measurements, PHI. [Module 2(a)]
7. N N Bhargava, D C Kulshreshtha, S C Gupta, Basic Electronics & Linear Circuits, TMH
9. R.R. Gulati, Monochrome and Colour Television, New Age International [Module 2 (c)]

This subject shall be handled by faculty of Dept. of Electronics and Communication in the Colleges.

Question Paper
The question paper shall consist of two parts. Part I is to cover the entire syllabus, and carries 40 marks. This shall contain 10 compulsory questions of 4 marks each. Part II is to cover 3 modules, and carries 60 marks. There shall be 3 questions from each module (10 marks each) out of which 2 are to be answered.

D. Plumbing: Study of tools. Details of plumbing work in domestic and industrial applications. Study of pipe joints, cutting, threading and laying of pipes with different fittings using PVC pipes. Use of special tools in plumbing work.

E: Foundry: Study of tools. Preparation of sand, moulding practice and demonstration of casting.

G: Smithy: Study of tools. Demonstration on forging of square prism, hexagonal bolt, T bolt and Eye bolt.

NOTE: For the university examination the student shall be examined in sections A, B, C, D and E only.
08. 301 ENGINEERING MATHEMATICS II
L-T-P/D; 3-1-0 (CMPUNERFHBTA) Credits: 4

Module I

Module II

Fourier series: Fourier series of periodic functions of period 2π and $2f$. Dirichlet's condition for convergence. Odd and even functions. Half range expansions. Fourier Transforms: Fourier integral theorem (no proof)-Fourier transforms- Fourier sine and cosine transforms, inverse Fourier transforms, properties

Module III

References

Note: The question paper shall consists of two parts. Part A (40 marks) Ten compulsory questions of 4 marks each. Part B (60 marks) Student must answer one out of two from each module. Each question carries 20 marks.
PART I- ECONOMICS (2 periods per week)

Module – I

Module -II

PART II - ACCOUNTANCY (1 Period per week)

Module III

References :
1. K.K Dewett, Modern Economic theory
3. Mohinder Kumar Sharma _ Business Environment in India
5. Rudder Dutt and K.P.M Sundaran – Indian Economy
8. Double Entry book Keeping – Batliboi
9. A Systematic approach to Accounting: Dr K.G. Chandrasekharan Nair

University question
Note: Part I and Part II to be answers in separate answer books.

Part – I Economics
Part A – 30 Marks (short answers) covering entire syllabus (3x10=30)
Part B – 40 marks (50% choice one out of two or two out of four from each module)

Part – II Accountancy
Three questions covering entire syllabus out of which two questions has to be answered (2x15=30)
Module – I

Properties of fluid - Density, Specific weight, viscosity, surface tension, bulk modulus, compressibility, velocity, rate of shear strain, Newton's law of viscosity, Newtonian and non-Newtonian fluids, real and ideal fluids, incompressible and compressible fluids. Atmospheric pressure, Gauge pressure and Absolute pressure. Pressure at a point in a fluid, Pascal's Law. Measurement of pressure - Piezo meter, manometers, pressure gauges. Energies in flowing fluid, head - pressure, dynamic, static and total head, Continuity equation, Eulers equation, Bernoulli’s equation, Practical applications: Flow rate measurements- Venturi and Orifice meters, Notches and Weirs (description only for notches and weirs).Velocity measurements- Pitot tube and Pitot –static tube. Flow through pipes: Reynolds experiment, Reynolds number, Laminar and Turbulent flow, Hagen- Poiseuille equation, Turbulent flow through pipes, head loss due to friction, friction factor, Mody's chart, Darcy- weisbach equation, Chezy’s formula - Losses at entry, exit, sudden expansion and sudden contractions, Compound pipes, branching of pipes, siphon effect, water hammer Transmission of power through pipes (simple problems)

Module – II

Impact of jets: Stationary and moving vanes – Flat and curved vanes – Series of vanes - work done and efficiency. Hydraulic Turbines : Impulse and Reaction Turbines – Pelton Wheel – Constructional features - Velocity triangles – Euler’s equation – Speed ratio, jet ratio & work done , losses and efficiencies, design of Pelton wheel – Inward and outward flow reaction turbines- Francis Turbine – Constructional features – Velocity triangles, workload and efficiencies – Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , similarity and model testing-selection of water turbines for power plants. Type Number– Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power

Module –III

References :
2. Robert W. Fox, Introduction to fluid dynamics, John Wiley and sons
3. K. Subrahmanya, Theory and applications of fluid mechanics, (TMH)
5. Jagadish Lal, Fluid mechanics and Hydraulic machines
6. R K Bansal, Hydraulic Machines
8. R.K. Rajput, Hydraulic Machines
9. D S Kumar, Hydraulics & Hydraulic Machines
11. N. S Govinda Rao, Fluid flow mechanics

Note
The question paper shall contain two parts. PART- A & PART – B

Part – A shall contain 10 compulsory short answer type questions of 4 marks each, covering the entire syllabus (10 x 4 = 40)

Part – B shall contain 2 questions from each module. Each question carries 20 marks. Student has to answer three full questions selecting one from each module (3x 20 = 60).
Module I

Concept of stress – normal stress and shear stress, concept of strain, normal strain and shear strain, constitutive relation, Hooke’s law, modulus of elasticity, modulus of rigidity, deformation of axially loaded bars, members with varying cross section, principle of superposition, composite bars, thermal stress.

Saint-Venant’s Principle and stress concentration, lateral strain, Poisson’s ratio, volumetric strain, bulk modulus of elasticity, relationship between elastic constants.

Concept of stress and strain tensor, generalised Hooke’s law, definition of plane stress, plane strain and examples. Stress transformation (2D only) principal stress and Mohr’s circle, Strain energy due to axial loads- gradually and suddenly applied impact loads.

Module II

Shear force and bending moment diagrams– cantilever, simply supported and over hanging beams-concentrated and UD loads, Theory of simple bending-bending stress and shear stress distribution-rectangular, circular and I sections.

Slope and deflection of beams, load- deflection differential equation, computation of slope and deflection of simply supported and cantilever beams- Macaulay’s method.

Module III

Torsion of circular shafts-solid and hollow shafts-power transmitted by shafts. Thin cylinders and shells subjected to internal and external pressures – thick cylinders and spherical shells- Lame’s equation – compound cylinders.

Direct and bending stress – short columns – core of section Crippling load-Eulers equation.

Analysis of pin-jointed plane perfect frames by the method of joints.

References :

1 S.B.Junarkar, Mechanics of structures Vol I & II
2 Egor P Popov, Engineering Mechanics of solids, PHI
3 Timoshenko, Strength of Materials
5 Singh G. D., Strength of materials, Ane Books India, New Delhi.

Note: University question paper consists of two parts
Part A – 40 Marks (8 compulsory questions of 5 marks each to cover the entire syllabus)
Part B – 60 marks (50% Choice, One out of Two from each module)
Module I

Module II

Compressors-Classifications, reciprocating compressor-p-v diagram, work done, effect of clearance, efficiencies, volumetric efficiency and free air delivered (FAD), two stage compression, optimum pressure ratio, effect of intercooling. Rotary compressors-classifications, working, Fans and Blowers-classification, working and field of applications (description only) Gas turbines- Classifications-open closed and semi closed cycle and working cycles, efficiency, work output, effect of regeneration, intercooling, reheating-

Module III

Refrigeration-Definition, Unit, Air cycles-reversed Carnot cycle, Bell Coleman cycle, COP, method of improving COP. Vapour refrigeration cycle-layout, T-s and p-h diagram, simple saturated cycle, wet and superheated cycle, effect of variation in pressure, effect of sub cooling and superheating-Liquid suction heat exchanger, Absorption refrigeration- Layout- Ammonia –water system and Electrolex system. Air conditioning- psychrometry-basic definitions, psychometric chart, psychometric process-problems. Load Calculation in air conditioning systems, the factors influencing the load calculation.

Reference:

1. Thermal Engineering- P.L Ballaney
2. Refrigeration & Air conditioning- C.P Arora
4. Heat Transfer - J P Holman
6. Thermal Engineering, Rajput.

Note
The question paper shall contain two parts. PART- A & PART – B
Part – A shall contain 10 compulsory short answer type questions of 4 marks each, covering the entire syllabus (10 x 4 = 40)

Part – B shall contain 2 questions from each module. Each question carries 20 marks. Student has to answer three full questions selecting one from each module (3 x 20 = 60).
08. 306 ENGINEERING DRAWING

<table>
<thead>
<tr>
<th>L-T-D: 1-0-4</th>
<th>(MPU)</th>
<th>Credits : 5</th>
</tr>
</thead>
</table>

PART - A Machine Drawing 0-0-2

Conversion of pictorial views into Orthographic views – Sectional views, types of sectional views, Conventions-Dimensioning techniques, BIS standards

Module-1

Free hand sketching: Screw thread forms and conventional representations, lock nuts, foundation bolts, forms of rivet heads, Riveted Joints – Lap (chain and zigzag with multiple rows), butt joints (chain and zigzag with multiple rows, single strap and double strap), different types of keys, Pipe joint-socket and spigot.

Module-2

Dimensioned drawing: Hexagonal and square headed bolt with nut, Sectional drawings of Socket and spigot joint, Knuckle Joint, Rigid flange couplings, Bushed Pin flexible coupling, Plummer block, Single plate clutch and Cone friction clutch. Pipe joints: Sectional drawings of Cast Iron Flanged joint, Hydraulic joint and Union Joint.

References:

1. N.D. Bhatt, Machine Drawing
2. P.I. Varghese, Machine Drawing,
3. P.S. Gill, Machine Drawing
4. Parkinson, Machine Drawing

PART – B Civil Engg. Drawing & Estimation 1-0-2

Module I

Drawing: Principles of building drawing, preparation of drawing of buildings such as office building, residential building (RCC and tiled roof, single storied and two storied), factory building with steel trusses for small scale industries.

Module II

Estimating: Principles of estimation, quantity estimation and cost estimation of building such as residential building and factory buildings.

References:

University examination duration – 4 hours
Part A and Part B are to be answered in separate answer books
Part A (50 marks) The question paper shall contain 2 questions. The first question is from module-1 which carries 20 marks. It contains 3 sub divisions and any 2 has to be answered, (2x10=20 marks). The second question is from Module 2, Dimensioned drawing which is a compulsory question and carries 30 marks.

Part B (50 marks) The question paper shall contain 2 questions from each module and one has to be answered from each. Module I carries 30 marks and module II carries 20 marks.
Experiments
1. Test on Mild Steel, High carbon steel and Cast Iron specimens
2. Shear test on MS Rod
3. Torsion test on MS Rod
4. Torsion test using Torsion Pendulum on MS, Aluminium and Brass wire
5. Izod and Charpy Impact tests
6. Hardness test (Brinell Hardness & Rockwell Hardness)
7. Spring test (Open and closed coiled)
8. Bending test on Wood
9. Determination of Moment of Inertia of Rotating Bodies
10. Chain Surveying and Levelling (4hrs only.)

Scheme of Examination:-
Exam. Duration: 3 hrs.
No examination for chain surveying and levelling, but viva shall be asked.

08.307 CIVIL ENGINEERING LAB
L-T-D: 0-0-2 (MPU) Credits: 2

08.308 FLUID MECHANICS LAB
L-T-D: 0-0-2 Credits: 2

2. Determination of Darcy's coefficients.
3. Coefficient of discharge and calibration of Notches, venturi meters and orifice meters.
4. Determination of metacentric height and Centre of pressure of floating bodies.
5. Hydraulic coefficient of a circular orifice.
6. Determination of coefficient and discharge of an orifice by the time of emptying method and Constant head method.
7. Performance test on Rotodynamic and Positive displacement pumps
8. Performance test on Impulse and Reaction turbines
Module I

Complex Differentiation: Limits, continuity and differentiation of complex functions. Analytic functions-Cauchy Reimann equations in Cartesian form (proof of necessary part only) properties of analytic functions-harmonic functions. Milne Thomson method
Conformal mapping: The Transformations \(w = 1/z \), \(w = z^2 \), \(w = z + 1/z \), \(w = \sin z \), \(w = \cos z \), Bilinear transformation

Module II

Complex Integration: Line integral- Cauchy’s integral theorem-Cauchy’s integral formula. Power series-radius of convergence-Taylors and Laurents series-zeros and singularities – Residues and residue theorem. Evaluation of real definite integrals-

\[
\int_{\text{arc}} f(z) \, dz = \int_{-\infty}^{\infty} f(x) \, dx \quad \text{with no poles of} \quad f(z) \quad \text{on the real axis} \quad \text{(proof of theorems not required)}
\]

Module III

References:

7. S.S.Sastry, Introductory methods of numerical analysis.

Examination Duration: 3 hours
Note: The question paper shall consists of two parts. **Part A** (40 marks) Ten compulsory questions of 4 marks each. **Part B** (60 marks) Student must answer one out of two from each module. Each question carries 20 marks.
Module – I

Introduction to Computer programming concept - Algorithm and flow chart, Basics of procedure oriented and object oriented programming.
Introduction to C++: Structure of C++ program; Key words; Identifiers; Data types – integer, real, character, string, boolean, enumeration, array and pointer; Constant and Variables; Escape sequences; Operators – assignment, arithmetic, relational, logical, increment & decrement, conditional, sizeof, comma and bitwise operators; Statements – simple & compound, declaration statements, Control statements -if, if-else, switch, for loop, while, do-while, break and continue statements, Input and output streams, Arrays – one dimensional & two dimensional; Functions- inline functions, function overloading, Functions with default arguments, recursion, pointers. Simple programs using above features.

Module –II

Introduction to Class and Object- definition, data members, member function, private & public member function, member access, friend declaration, class objects, predefined classes, initialization, constructor and destructor; Operator overloading, Inheritance- base class and derived class; Input/output stream library - ifstream, ofstream, fstream, class flies. Simple problems using the above features.

Module-III

References :
1. Ashok M. Kamthane, Object oriented Programming with ANSI & Turbo C++, Pearson Education.
3. Stanley B. Lippman and Josee Lajoie, C++ Primer, Pearson Education.

The question paper shall contain two parts (Part A and Part B).
Part – A shall contain 10 compulsory short answer type questions of 4 marks each, covering the entire syllabus (10 x 4 = 40), Part – B shall contain 2 questions from each module. Each question carries 20 marks. Student has to answer three full questions selecting one each from module. (3x 20 = 60).
Module I

Module II

Module III

References:

1. L.W. Van Wlanck, Elements of Materials Science.
7. Dieter, Mechanical Metallurgy.
8. Serope Kalpakjain et al., Manufacturing Engg and Technology.

Note: Question paper shall consist of 2 parts, Part A – Compulsory short answer questions of 4 marks each covering the entire syllabus (10x4=40 marks), Part B – 60 Marks (50 % choice, one out of two from each module)
Module I

Module II

Module III

Reference:
1. Principles of manufacturing materials and process, Campbell
2. Production technology, Jain and Gupta
3. Foundry technology, Lal
4. Metal Process engineering, Poulukhin
5. Processes and Materials of Manufacture, Roy A. Lindberg, Pearson Education
8. ASM metal Hand Book

Note: Question paper shall consist of 2 parts, Part A – Compulsory short answer questions of 4 marks each covering the entire syllabus (10x4=40 marks), Part B – 60 Marks (50 % choice, one out of two from each module)
Module- I

Introduction to metal removal process – types of machine tools, Lathes: Engine Lathes – specification-general study of main parts and tool and work holding devices, lathe operations and cutting tools used, speed and feed for turning, turning time calculations. Types of lathes - Capstan, Turret, Copying. Automatic and semi-automatic lathes - their working principles, applications and essential difference from engine lathe.

Module- II

Shaping, planning, and slotting machines - specifications, main parts and functions, operations, work and tool holding devices, drives adopted and tools used. Drilling machines-types and specifications, main parts and functions, operations, work and tool holding devices, drilling tool nomenclature, deep hole drilling, reaming. Boring machines- main parts and functions, boring machines, operations, examples of work done.

Module- III

Reference:

1. Machine Tools Vol. 2 -Hajre Chaudhery
2. Production Technology -HMT
3. Production Technology -R. K. Jain
4. Processes and material manufacture -Roy A Lindburg, Pearson Education.
5. Work shop Technology Part 3 -W. A. J. Champonen

Note: Question paper shall consist of 2 parts, Part A – Compulsory short answer questions of 4 marks each covering the entire syllabus (10x4=40 marks), Part B – 60 Marks (50 % choice, one out of two from each module)
Module-1

Information to be furnished in drawings- Fits and Tolerances, form tolerance and position tolerance, Geometric tolerance and its indications on drawing, Surface texture- indication of surface roughness, indication of production method, surface treatment, IS specifications.

Module-2

Assembly and working drawing (Part drawing)- Shaft bearing and supports – Pedestal bearings, Plummer block and foot step bearing, I.C. Engine parts – Piston and Connecting Rod, Valve - Stop valve for boilers, Ramsbottom safety valve and lever safety valve, Machine parts - Lathe tail stock, spindle, tool post, Tool head for shaping machine, screw jack, Bench vice and Machine vice.

Note: The question paper shall contain 2 questions. The first question is from Module-1 and shall contain 3 sub divisions out of which 2 to be answered (2x10=20marks). The second question is from Module-2 carries 80 marks and is a compulsory question.

Reference
1. Study of I.C engines :
 a) Diesel engines - all systems and parts
 b) Petrol engines - all systems and parts
2. Study of pollution testing equipment and flue gas analyser
3. Repairing of I C engines – tools and accessories used for it
4. Determination of flash and fire points of petroleum products
5. Determination of viscosity of lubricating oil using Redwood Viscometer
6. Determination of calorific value of solid, liquid and gaseous fuels using Bomb calorimeter and Gas Calorimeter
7. Experiment on I C Engines
 a) Load test to obtain performance curves based on B.P and B.M.E.P
 b) Heat Balance test
 i. Heat exchanger method
 ii. Flue gas analysis method
 iii. Volumetric efficiency method
 c) Valve timing diagram
 d) Economic speed test
 e) Best cooling water Temperature test
 f) Retardation test
 g) Volumetric efficiency and Air-fuel ratio test
8. Morse test on petrol engine.

1. Lathe: Study of tools and accessories, exercise on plane and taper turning, groove (ball and cup) and thread cutting,
2. Shaping Machines: Study of tools and accessories, exercise on shaping flat surfaces and V-groove
Module I

Discrete and continuous random variables and their probability distributions - Probability distribution (density) functions - Distribution functions - Mean and Variance - Simple problems - Binomial, Poisson, uniform and exponential distributions - Mean and Variance of the above distributions - Normal distribution - Properties of normal distribution - Computing probabilities using Binomial, Poisson, uniform, exponential and normal distributions

Module II

Curve fitting - Principle of least squares - Fitting a straight line - Fitting a parabola - Linear correlation and regression - Karl Pearson’s coefficient of correlation - Sampling distributions - Standard error - Estimation - Interval estimation of population mean and proportions (small and large samples) - Testing of Hypothesis - Hypothesis concerning a mean, Equality of means - Hypothesis concerning one proportion, difference of two proportions.

Module III

Reference

1. T. Veerarajan, Probability and Random Processes, TMH
2. Richard A. Johnson, Probability and statistics for engineers, Pearson
3. G. Hadly, Linear Programming, Addison Wesley
4. Ravindran, Philips, Solberg, Operations Research, Wiley

University Examination

The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module-I

Module-II

Module-III

References:

1. A text book of electrical technology-- B.L.Theraja, A.K.Theraja
2. Art and utilization of electric energy – Partab
3. Principles of electrical and electronics – V.K. Metha

University Examination
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module – I

Straight line mechanisms – Watt mechanism – Peaucellier mechanism – Harts mechanism.

Velocity analysis of mechanisms: Velocity analysis – Instantaneous center of velocity. Aronhold & Kennedy’s theorem – locating instantaneous centers (upto 6 link mechanisms) – Velocity analysis using instantaneous method – Centrodes velocity analysis – analytical method. (Slider crank mechasim only)

Module – II

Velocity and acceleration analysis of mechanisms: Relative velocity method -Relative acceleration method –Graphical method - Velocity and acceleration diagrams – Vector methods - Coriolis component of acceleration Klien’s Construction
Friction Clutches: Plate clutches – Conical clutches –power transmitted
Brakes and Dynamometers: Types of brakes: Analysis of shoe , band , band and block brakes-internal expanding shoe brakes. Dynamometers- Description of Absorption and Transmission type dynamometers

Module – III

Gears: Types of gears –Terminology- law of gearing – gear tooth profiles.- interference and under cutting,- calculation of minimum number of teeth, contact ratio, path of contact, arc of contact,- effect of friction in gears. Gear trains: Types of gear trains-compound, reverted and epicyclic. Torque in epicyclic gear trains.
Cams: Classification of cams and followers-Terminology - graphical layout of cam profiles,- standard follower motions– Disc cam with reciprocating or pivoted type knife edge, flat faced or roller followers-. Description of Tangent cam and circular arc cams (No problems).

References
1. Shigley and Uicker, Theory of Machines and Mechanisms,McGraw Hill
2. Rao and Dukkipatti, Mechanism and Machine theory,Wiley Eastern
3. P.L. Ballaney, Theory of Machines and Mechanisms
4. S.S. Rattan, Theory of machines, THM
5. Amithabha Ghosh and Malik - Theory of Machines and Mechanisms
6. V. Ramamoorthi, Mechanics of Machinery, Narosa
7. Kinematics of Machines, Myzka, Pearson Education
8. Charles E Wilson and J Peter Sadler , Kinematics and Dynamics of Machinery 3rd ed, Pearson Education
University Examination
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 × 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 × 20 = 60).
Module I

Module II

Data acquisition system-block diagram and explanation of each block. Transducers – LED, Laser diode and Thermistors. Actuators. Micro controllers – Intel 8051 – Architecture, memory organization, register banks, special function registers, addressing modes. Instruction set of 8051 – Programming examples (addition, subtraction, 8 bit multiplication and 8 bit division, interfacing with 7-segment LED display only). Application of 8051 - microcontroller based temperature control system. ADC, DAC.

Module III

References

1. Harish C. Rai, Industrial and power electronics, PHI
3. Muhammad H Rashid, Power Electronics, 2nd Edn., PHI
5. Benjamin C. Kuo, Automatic control system, 6th Edn, PHI, New Delhi

University Examination

The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60)
Module I

Module II

Module III

Reference:
2. Welding Engineering Handbook - ASME
3. Welding Engineering - Rossi
5. Welding Process and Technology - Partner R.S. Khanna Publishers

University Examination
The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
08.506 ELECTIVE I

Refer Elective Section

08.507 PRODUCTION PROCESS LAB

L-T-D: 0-0-3 Credits: 3

Welding: Preparation of joints, Exercises on different types of welding - Metal arc welding, TIG welding, MIG welding, Gas welding and Resistance welding. Exercises on testing of weld joints – destructive and non-destructive.

08.508 ELECTRICAL AND ELECTRONICS LAB (MPU)

L-T-D: 0-0-3 Credits: 3

1. OCC on a DC shunt generator- determination of critical resistance, critical speed, additional resistance required in the field circuit.
2. Load characteristics of a dc shunt generator.
3. Load characteristics of DC compound generator
4. Load test on DC series motor
5. Load test on DC shunt motor
6. Load test on single phase transformer
7. Starting of three phase squirrel cage induction motor by star delta switch, load test on three phase squirrel cage induction motor
8. Load test on three phase slip ring induction motor
9. V-I characteristics of diodes and zener diode
10. Input and output characteristics of CE and CB configurations of BJTs. Determination of β, input resistance and output resistance
11. Drain and transfer characteristics of JFET
12. Static V-I characteristics of SCR
13. Half wave and full wave rectifiers with and with out filters- observe the waveforms on CRO
Module-I

Module II

Module III

Transducers:- Classification- Static and Dynamic characteristics of Transducers and Dynamometers. Stress- Strain Measurement: Types of strain gauges- Strain measurements by using resistance strain gauges and Mechanical strain gauges-types, application. Basic concept in static and dynamic measurements: Analysis of Experimental errors Gaussian and normal error Distribution- methods of Least Squares- Simple problems.

Reference :
2. Mechanical and Industrial measurements- R. K. Jain
4. Engineering precision metrology – R. C. Gupta

University Examination
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module – I

Force analysis:

Static force analysis: Graphical and vector method- Free body diagrams-Conditions for equilibrium- two and three force members,- four force members, Analysis of mechanisms without considering friction, -Analysis with sliding and pin friction- Method of virtual work-Principal of super position

Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, -Analysis of mechanisms, Equivalent dynamical systems. Shaking forces and moments.

Flywheel analysis: Fly wheel- Turning moment diagrams,- fly wheel in different applications like IC engines, -Punching press – Dimensions of the fly wheel rim – Size of fly wheel.

Module II

Module III

Vibration Analysis

References

1. Holowenko, Dynamics of Machinery, John Wiley
2. Shigley and Uicker, Theory of Machines and Mechanisms, McGrawhill
3. Charles E Wilson and J Peter Sadler , Kinematics and Dynamics of Machinery 3rd ed, Pearson Education
4. Ballaney P.L., Theory of Machines
5. V. Ramamoorthy, Mechanics of Machinery, Narosa
6. S S Rattan, Theory of Machines, TMH
7. Rao and Dukkipati, Mechanisms and Machine theory
8. Amithabha Ghosh and Malik, Theory of Machines and Mechanisms
9. Elementary Mechanical Vibration & Noise Control, Lasithan

University Examination

The question paper shall contain two parts. Part A and Part B.

Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).

Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Module II

Module III

References:
1. Mikell P Groover, CAD/CAM, Prentice Hall
5. P.Radhakrishnan and S.Subramanyan, " CAD / CAM / CIM ", New Age Int. Ltd
9. Daryl Logan, A First course in Finite Element Method, Thomson Learning

University Examination: The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Module II

Unconventional methods of machining: principle of working ,areas of applications and characteristics of the following operations. EDM, ECM, CHM, LBM, EBM, AJM, USM, PAM, Water jet cutting. Machine tool drives-electrical, mechanical, hydraulic and combination systems - advantages and disadvantages. Materials for machine tool structures. Machine tool rigidity, sources, effects and elimination of vibration in machine tools

Module III

Hydraulic circuits, fundamentals of hydraulic circuits- type of pumps, valves etc. hydraulic circuits for feed and cutting motion. Hydraulic copying system. Powder metallurgy - Manufacture of metal powders, Powder compaction - Mechanical, thermal and thermomechanical compacting processes, Sintering mechanism, Manufacturing and application of important P/M components.

References:

1. Machine tool operation Burghardt
2. Process Engineering Carry and Johnson
3. Work shop Technology vol-II Raghguvanshi
4. Production Technology R.K Jain
5. Production Technology HMT
6. Powder Metallurgy ASM Vol. II
7. Powder Metallurgy Gopal S. Upadhayay
8. Powder Metallurgy Sands and Shakespeare

University Examination
The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Module II

Module III

References:

5. Machine Design - Abdulla Sherief

University Examination

The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
I. Introduction to Solid modeling, Assembly and Finite Element Analysis software.

II. Exercises on modeling and assembly.
 a. Creation of 3D solid models.
 b. Creation of assembled views of riveted joints, cotter joints and shaft couplings.

III. Exercises on the application of Finite Element Method to engineering systems:-
 a. Structural analysis.
 b. Thermal analysis.

University exam pattern:
Duration – 3 hrs., The question paper shall consist of two parts.
Part A – 40 marks from modeling, Part B – 40 marks from Assembly and/or Analysis.
Viva – 20 marks.

1. Microstructure study: Specimen preparation, microstructure study of Steels, Cast iron and Brass.
2. Grain size measurement.
3. Heat treatment study – Effect on Mechanical properties and microstructure of Steels, Cast iron, Brass and Aluminum.
4. Linear measurements using Vernier calipers and external and internal Micrometers, height gauge and depth gauges.
5. Angular measurements using Bevel protractors, angle gauges, sine bar
6. Slip gauges
7. Exercise on comparators: mechanical, pneumatic and electronic comparators
8. Flatness testing of surface plates using auto collimators.
9. Measurement of surface roughness using roughness measuring machines
10. Measurements using Profile projector.
11. Measurements using Universal Measuring Microscope
Module I

Evolution of Scientific management- Principles and functions of scientific management, Concept of pre modern, modern and post modern management, Levels and skills of management. Organizational structure- Authority, responsibility and span of control - system concept of management – Line, Line and staff, project and matrix organization. Formation of companies- Proprietary Partnership and joint stock companies –private limited, public limited companies, cooperative organizations and Government organizations.

Module II

Module III

References:

1. Principles & Practice of Management-T N Chabra, Dhanpat Rai (pub)
2. Industrial Engineering & Production Management, M. Mahajan - Dhanpat Rai
3. Industrial engineering and management: O P Khanna
4. Fundamentals of operation research: Hillier and Lieberman

University Examination

The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I
Micro Electro Mechanical Systems (MEMS): Fabrication methods - Working and applications of MEMS based accelerometer, pressure sensor and gyroscope

Module II
System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems.
Adaptive control of machine tools. Programmable Logic Controllers (PLC) – Architecture, input/output processing, development of simple ladder diagrams.

Module III
Case studies of mechatronics systems: Pick and place robot, automatic car park barrier system, automobile engine management system.

References

University Examination
The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60)
Module I
Product development cycle-Application of computer for design (CAD), manufacturing (CAM) and integration of CAD/CAM- Elements of Computer Integrated Manufacturing (CIM) Systems – Product design to marketing. Various activities in CIM -- From product design to marketing. Sequential and concurrent engineering – Concepts and features.

Module II

Module III

References:

University Examination
The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each covering the entire syllabus (10 x 4 = 40). Part B shall contain 2 questions of 20 marks each from modules I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Introduction to metal cutting and metal removal processes, classification of cutting tools, geometry of single point and multi point cutting tools, tool nomenclature- ASA and ORS systems-inter relationship. Effect of tool geometry in metal cutting. Mechanism of metal removal-Primary deformation on shear zone and Secondary deformation on rake face- Chip formation, types of chip, BUE formation- Friction in metal cutting-methods to reduce friction-chip breaker.

Module II

Module III

Reference:-
1. Principle of metal cutting - Sen and Bhattacharya
2. Metal cutting principles - Shaw M.C
3. Fundamentals of machining and machine tools - Boothroyd
4. Theory of metal cutting - Black P.H
5. Production technology - HMT
6. Metal cutting - E.M.Trent
7. Tool manufacturing engineers hand book - ASTME
8. Production engineering - P.C Sharma

University Examination
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module: I

Module: II

Module: III

References:
1. Machine tool design N.K Mehta
3. Mechanical Engineering design Joseph Edward Shigly

University Examination
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Refer Elective section

08.707 PRODUCTION TOOLING LAB

L-T-D: 0-0-2 Credits : 2

1. Milling machine: Exercise on milling spur gear and helical gear.
3. Tool grinding – Exercise on Single point cutting tool grinding.
4. Force measurement: Exercise on force measurement using
 a) Lathe tool dynamometer
 b) Drilling tool dynamometer.
 c) Milling tool dynamometer
5. Exercise on temperature measurement in metal cutting.

08.708 CIM LAB

L-T-D: 0-0-2 Credits : 2

1. Manual part programming for CNC machines using standard G codes and M codes
2. Study and exercise on CNC Milling Machine for
 a. Profile milling
 b. Surface milling
 c. Drilling and Reaming
 d. Pocket milling
3. Study and exercise on CNC Lathe for
 a. Plane turning
 b. Taper turning
 c. Thread cutting
 d. Form turning
4. NC code generation using CAM softwares.
5. Study and exercise on Coordinate Measuring Machine (CMM)
 a. Measurement of Flat, Cylindrical and Spherical surfaces
6. Study and Programming on a Pick and Place robot.
7. Study and exercise on Rapid prototyping (RP) Machine
 a. Making of a simple component.
The Students shall do a project work, which can be the preliminary work of final project, and submit a report at the end of semester. The students shall present a seminar on a topic which is of high relevance to Mechanical Engineering. A report on seminar also shall be submitted at the end of the semester. 25% credit should be given for Project, and 75% credit for Seminar.
Module I

Module II

Module III

References:

University Examination

The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Module II

Methods engineering: Analysis of work methods using different types of process chart and flow diagrams- Critical examination- Micro motion study and therbligs- SIMO chart-Principles of motion economy – determination of allowances and standard time. - Job evaluation and merit rating – Objectives and principles of job evaluation- merit incentive plan – Merit rating plans. Wages and Incentives- Primary wage systems- Time rate and piece rate system of wage payment- Incentive plans- essentials of a good wage incentive plan- Non monitory incentives. Industrial relations- Psychological attitudes to work and working conditions - fatigue- Methods of eliminating fatigue- Effect of Communication in Industry, causes effects of industrial disputes- Collective bargaining- Trade union – Workers participation in management.

Module III

Production planning and control- Importance of planning – job, batch and mass production-Determination of economic lot size in batch production- Functions of production control – Routing , Scheduling, dispatching and follow up- Gantt charts. Inventory Control, Inventory models -Determination of EOQ and reorder level, selective inventory control techniques. Quality control and Inspection- Destructive and non-destructive testing methods- process capability- Statistical quality control and control charts for X and R. (Simple problems without using SQC table). Acceptance sampling and operation characteristic curves- System reliability- life testing-Bath tub curve. Introduction to concepts of Bench marking, TQM, ISO, Six Sigma and Quality circles (Brief description only).

References:
1. Industrial Engineering and Management - O. P. Khanna
2. Time and Motion Study - Ralph and Barien
3. Statistical Quality Control - Grant and leven Worth
5. Industrial Engineering & Production Management - M Mahajan - Dhanpat Rai
7. Industrial Engineering - Dr. B. Kumar, Khanna pub.
8. Introduction to work study - ILO
University Examination

The question paper shall contain two parts. Part A and Part B. Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus \((10 \times 4 = 40)\). Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered \((3 \times 20 = 60)\).
Module I
Jigs and fixtures – Necessity for jigs and fixtures - Elements of fixtures, design considerations, locators, types of locators, clamping and guiding devices, swarf disposal methods. Work holding devices for flat, round and irregular surface, - Design of drill jigs, bush specifications. Fixture for lathe operations, milling, broaching and welding fixtures, fixtures for CNC machines, modular fixtures.

Module II

Module III

References
1. Tool Design – Cysil Donaldson TMH
2. Tool Design – Cole G.B.
3. Die Design Hand Book – ASTME
4. Jigs and Fixtures – Calving-Hoose
5. Jig and Fixture Design Hand Book – William and Boyes
7. Fundamentals of Fixture Design – V.Koraskove Mir.
8. Metal Hand Book- ASM

University Examination:
The question paper shall contain two parts. Part A and Part B.
Part A shall contain 10 compulsory questions of 4 marks each, covering the entire syllabus (10 x 4 = 40).
Part B shall contain 2 questions of 20 marks each from module I, II and III. One full question from each module has to be answered (3 x 20 = 60).
Module I

Module-II

Module-III
Design of simple products dealing with various aspects of product development and design starting from need till the manufacture of the product.

References:

2. Engineering Design –George E.Dietoer
3. An Introduction to Engineering Design methods Vijay Gupta

University Examination

There will be 3 questions of 15 marks from modules I & II. Students have to answer any 2 from each module. From module III, answer 2 out of the 3 questions given which carries 20 marks each.
The Student shall present a Seminar based on industrial visits under taken from V-VII semesters. A minimum of four visits are compulsory. A report on industrial visits shall be submitted. The institution shall arrange minimum four Seminars on latest topics by experts from Industry. The student shall be evaluated based on the report on industrial visits, presentation, interaction, performance in the class and general awareness on topics of expert lectures.

A project work of good quality should be done under the guidance of project guide(s) and a project report should be submitted. For internal assessment, 50% weightage to be given to the assessment of the guide and 50% to the committee assigned to assess the project work. For University examination a Viva-voce examination shall be conducted. Marks of Viva voce examination shall be based on the overall performance, Project report, Seminar reports, Subject knowledge and general awareness in the developments in Mechanical Engineering.
ELECTIVE SECTION

LIST OF ELECTIVES

(Electives are common to Mechanical, Production and Automobile engineering branches unless otherwise specified in the title)

08. 506 Elective I

1. Communicative English and technical writing
2. Human aspects of management
3. Disaster Management
4. Glimpses of world thought
5. Professional ethics and human values
6. Environmental Science
7. Advanced Welding technology
8. Foundry Technology
9. Environmental Pollution Control
10. Advanced Fluid Mechanics
11. Composite Materials Technology
12. Internet Technologies
13. Non Destructive Testing
14. Powder Metallurgy
15. Vehicle Transport & Fleet Management
16. Automotive Airconditioning
17. Two And Three Wheeled Vehicles

08.606 Elective II 08.706 Elective III

<table>
<thead>
<tr>
<th>08.606 Elective II</th>
<th>08.706 Elective III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. New Energy systems</td>
<td>2. Advanced Thermodynamics</td>
</tr>
<tr>
<td>3. Object Oriented Programming</td>
<td>3. Industrial Heat Transfer</td>
</tr>
<tr>
<td>5. Mechanical working Methods</td>
<td>5. Fracture Mechanics</td>
</tr>
<tr>
<td>7. System Modeling & Simulation</td>
<td>7. Entrepreneurship Development</td>
</tr>
<tr>
<td>8. Instrumentation and control</td>
<td>8. Industrial Hydraulics</td>
</tr>
<tr>
<td>10. Agro Machinery</td>
<td>10. Metal Forming</td>
</tr>
<tr>
<td>12. Precision Engineering</td>
<td>12. Non-conventional Machining Techniques</td>
</tr>
<tr>
<td>16. Tool Engineering (MU)</td>
<td>16. Failure Analysis</td>
</tr>
<tr>
<td>17. Vehicle Body Engineering</td>
<td>17. Theory of Machining (MU)</td>
</tr>
<tr>
<td></td>
<td>20. Industrial Automation</td>
</tr>
<tr>
<td></td>
<td>21. Alternate Energy Sources</td>
</tr>
<tr>
<td></td>
<td>22. Automotive Pollution and Control</td>
</tr>
<tr>
<td></td>
<td>23. Creativity, Innovation and New Product Development</td>
</tr>
<tr>
<td>08. 805 Elective IV</td>
<td>08. 806 Elective V</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1. Experimental Stress Analysis Techniques</td>
<td>1. Propulsion Engineering</td>
</tr>
<tr>
<td>2. Aerospace Engineering</td>
<td>2. Industrial Refrigeration</td>
</tr>
<tr>
<td>3. Facilities Planning</td>
<td>3. Industrial Quality Control</td>
</tr>
<tr>
<td>5. Non linear Dynamics and Chaos</td>
<td>5. Creativity& Product Development</td>
</tr>
<tr>
<td>7. Multiphase flow</td>
<td>7. Random vibrations</td>
</tr>
<tr>
<td>8. Controls in Machine tools</td>
<td>8. Advanced Kinematics of Machines</td>
</tr>
<tr>
<td>10. Tribology</td>
<td>10. Flexible Manufacturing Methods</td>
</tr>
<tr>
<td>11. Value Engineering.</td>
<td>11. Computational Fluid Dynamics</td>
</tr>
<tr>
<td>12. Software Engineering</td>
<td>12. Technology Forecasting</td>
</tr>
<tr>
<td>17. Product and brand management</td>
<td>17. Robotics</td>
</tr>
<tr>
<td>18. Research Methodology</td>
<td>18. Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>20. Automotive Technology (P)</td>
<td>20. Surface Engineering</td>
</tr>
<tr>
<td>22. Industrial Safety Engineering</td>
<td>22. Heating Ventilation and Air Conditioning Design</td>
</tr>
<tr>
<td>24. Tractors & Farm Equipments</td>
<td>24. Off- Road Vehicles</td>
</tr>
</tbody>
</table>
Module I

Listening, Reading, Speaking and Writing skills.

Listening Skills: Listening for general content- Intensive listening-Listening for specific information.

Speaking Skills: Oral practice-Describing objects/situations/people-Role play-Just A Minute/Group Discussion- informal letters-essentials of telephonic conversation-invitations-minutes of a meeting.

Reading Skills: Skimming the text- exposure to a variety of technical articles, essays, graphic representation, and journalistic articles.

Writing Skills: Skills to express ideas in sentences, use of appropriate vocabulary -sentence construction-paragraphs development-note making-editing a passage and essay writing.

Basics of Technical Communication.

Technical communication- features, Distinction between general and technical communication- language as a tool of communication- levels of communication-interpersonal, organizational, mass communication-the flow of communication: upward, downward and lateral-importance of technical communication- barriers to communication.

Module II

Forms of Technical communication.

Module III

A non-detailed study of the autobiography: “Wings of Fire-an autobiography by Dr. APJ Abdul Kalam”.

Students should read the book on their own and selected topics may be discussed in the class.

References.

4. Everyday Dialogues in English-Robert J Dixson, PHI.

University Examination:

Six short questions to be answered out of 8 questions from Module I. Each answer carries 5 marks. (30 marks). Questions to be limited to the topics *Writing Skills& Basics of Technical Communication*. 2 questions out of 4 has to be answered from Module II. Each answer carries 15 marks. (30 marks). Two essays out of Four has to be answered from module III.. Each answer carries 20 marks. (40 marks).
Module 1

Module 2
Organizational development, Concepts of QWL-strategies for improved QWL, Organizational change, Resistance to change, Goals of organizational change and organizational development, Concept of organizational climate-health and effectiveness. Organizational culture—nature and characteristics, types, impact of culture in organizational behaviour, Motivation of person across cultures, Managerial leadership across cultures, Case studies.

Module 3

References:
1. Fred Luthans, Organizational Behaviour, McGraw Hill.
2. Stephen P. Robbins, Organizational Behaviour, Pearson Education.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3x20=60)
Module I

Module II
Preparedness and mitigation measures for earthquakes, floods, tsunamis, landslides and volcanoes with special reference to construction of residential buildings and public utility buildings. Disaster mitigation planning of human settlements and townships for earthquakes, floods, tsunamis, landslides and volcanoes.

Module III
Issues in the prediction of natural disasters, land use practices and disaster mitigation. Integration of rural development programmes with natural disaster mitigation and planning. Information systems and decision making tools in disaster management. Disaster management in India.

References
3. Murty, C.V.R. Earthquake tips

University Examination:
Duration: 3 hours
The question paper consists of Part A and Part B. Part A is for 40 marks. There will be 8 compulsory short answer questions of 5 marks each covering entire syllabus.
Part B is for 60 marks. There will be two questions from each module. The candidate has to answer one question of 20 marks from each module.
Module I
Introduction - Ancient Period - The History of ‘ideas’ - the earliest thinkers - East and West - Ancient Indian texts - Vedas, Sutras, Sastras and Upanishads - some early Greek thinkers - Anaxagoras, Ionians - other centres of learning in the ancient world - China, Egypt, South America - Mayars, Incars - Greek and Roman schools of thought
Medieval ages & Renaissance - The Dark Ages - Renaissance Thinkers - Leonardo, Copernicus and Kepler - art and literary movements (school of paintings and other forms of reputation) - The Philosophy of science and the development of the Scientific Method - Arts Vs. Science - the flowering of academic disciplines - the science of ‘knowledge’ - the great intellectual debates - technology and revolutions - industrial and scientific revolution

Module II
The major schools of thought - positivism, nihilism, dialectical materialism - Marxism and its social, cultural and economic dimensions - revolutions in human perception - theories of human evolution - theories of human betterment theories of social analysis (French Revolution, October Revolution) - the great inventors and discoveries and their relation to human thought (Darwin’s theory and growth of imperialism) - determinism, modernism and colonial theories.

Module III:
The modern era - structuralism - definition and implications in the various sciences - post-structuralism, post-modernism, Neo-Marxism and post-colonial theories - new disciplines - cognitive science - language, culture and cognition - current trends and issues - semiotics - the science of signs. Human values in Engineering.

References
1. Will Durrant, The Story of Philosophy, Simon & Schuster
2. Will Durrant, The Pleasures Philosophy, Silmon
3. Berntard Russell, History of Western Philosophy, George Allen & Unwin
5. Will & Ariel Durrent, The Story of Civilisation, Volume I to XII
6. Edward Gibbon, The Rise and Fall of the Roman Empire
7. Oswald Spingler, Decline of the West
8. Dr Radhakrishnan S., The Creative Life
9. Dr Radhakrishnan S., The Present Crisis of Faith
10. Dr Radhakrishnan S., Our Heritage
11. Dr Radhakrishnan S., Religion and Culture
12. Dr Radhakrishnan S., Living With A Purpose
13. Dr Radhakrishnan S., True Knowledge
14. Dr Radhakrishnan S., Towards A New World
15. Dr Radhakrishnan S., Recovery of Faith
16. Dialogues of Plato
18. Alston, Philosophy of Language, Prentice Hall
19. Shaffer, Philosophy of Mind, Prentice Hall

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II
ENGINEERING AS SOCIAL EXPERIMENTATION: Engineering as experimentation - Engineering as responsible experimenters – Codes of ethics – A balanced outlook on law – The challenger case study.

Module III
GLOBAL ISSUES: Multinational corporation – Environmental ethics – Computer ethics Weapons development – Engineers as managers – Consulting engineers and engineers as expert witness and advisor – Moral leadership – sample code of ethics like ASME, ASCE, IEEE – Institution of engineers (India) – Indian Institute of Materials Management – Institution electronics and telecommunication engineering (IETE) India etc.

References:
2. Mike W Martin and Schinzinger, Ethics in Engineering, Tata Mcgraw Hill.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3x20=60)
Module I

Module II

Module III
Environmental Pollution and their effects. Water pollution, Land pollution. Noise pollution, Public Health aspects, Air Pollution, Solid waste management.
Acid Rain, Ozone Layer depletion, Animal Husbandry.
Environmental Protection- Role of Government, Legal aspects, Initiatives by Non-governmental Organizations (NGO), Environmental Education, Women Education.

REFERENCES:
1. Environmental Studies – Benny Joseph – Tata McgrawHill-2005

University Examination:
Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
L-T-D: 3-1-0

Credits: 4

Module I

Module II

Module III

REFERENCES:
4. Rossi, Welding Engineering.
5. Udin et al., Metallurgy of Welding.
6. Teo goisky, The electric welder.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Casting as process of manufacture – Its advantages and limitations
Pattern making – Pattern materials – Factor effecting the choice of pattern materials –
Pattern allowances – Types of pattern – Line diagram description and use of different types
of patterns- colour codes of pattern .
Moulding process – Hand moulding tools and their uses – Different types of moulding boxes
– Green sand moulds, dry hand moulds, Loan moulds, plaster moulds, cement bonded
moulds – bench moulding, floor moulding and pit moulding.

Module II
Moulding sands : Natural sand, synthetic sand, sand mixing – General properties of
moulding sand – testing of moulding sand – Ingredients for moulding sand – Special
additives – Reliability of moulding sands – Maintenance of sand properties for regular use –
Sand conditioning .
Cores and core making – Purpose of cores – core prints – Types of cores – Core sand and
ingredients – Requirements of core sands – Core sand mixtures – Binding materials – Core
boxes – Types of core boxes – Process of core making – Core baking, core creating, core
reinforcing – core venting etc.
Gating and Risering – Solidification of pure metals and alloys in moulds – Factors affecting
the nature and type of solidification – Gate and gating system – Types of gates – Design of
gating systems – Risering – Needs for risering – Requirements of a riser. Theoretical
considerations – Riser shape and directional solidification – General considerations for
risering – Bling riser – Use of chills, insulators and exothermic compounds.

Module III
Melting and pouring : Types of furnaces used for cast irons, steels and non ferrous metals –
Composition, size and charge calculations – Details and calculations in Cupola charging –
New developments in cupola design.
Mechanisation in foundry – Elementary ideas of machines used for sand conditioning, sand
supply, moulding, core making, knockout and fettling.
Special moulding and Casting processes – Shell moulding, plaster mould casting –
Investment casting, CO2 process – Graphite and ceramic moulds – Centrifugal casting –
Continuous castings.

References
1. Hine and Resenthal, Principles of Metal Casting.
5. Russicof, Foundry practice.

University Examination
Question Paper consists of two parts. Part A–10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
Environmental aspects - Impact of environment - Environmental quality - Role of environmental engineer.
Air quantity - Definition, Characteristics and prospective - Types of our air pollutants - effect of air pollution on men and environment - Formation of air pollutants from combustion of fossil fuels and parameters controlling the formation.

Module II
Water pollution from tanneries and other industries - Engineered systems for waste water treatment and disposal - Control systems and instrumentation for pollution control.
Definition, characteristics - Types and sources of solid waste - Solid waste management - generation, collection, storage and processing techniques - Solid waste disposal.

Module III
Methods and equipment’s for industrial waste treatment - Pollution thermal power plants and nuclear power plants - Sources and control methods - Emission from SI and CI engines - Evaporative emission control -Exhaust treatment devices - Noise pollution and their control.

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Description of fluid motion – Lagrangian and Eulerian approaches, Velocity, gradient of velocity, rate of strain, stress, Newton's law of viscosity, Stokes hypothesis, acceleration, temporal acceleration, convective acceleration. Reynolds transport theorem, derivation of continuity and momentum equations using Reynolds transport theorem, Navier-Stokes equation for in-compressible flow, Stream function, rotation, vorticity, stream function-vorticity formulation, equation of potential flow.

Module-II
Derivation of Hagen Poissule equations for velocity and discharge through a pipe, derivation of friction factor for laminar flow, Couette flow for negative, zero and positive pressure gradients, flow in a rotating annulus, Viscometer based on rotating annulus. Potential flow, theory of complex variables, complex flow potential, complex flow potentials for source, sink, vortex and doublet. Potential flow past a cylinder, conformal mapping, flow over an ellipse, flow over a vertical flat plate, force and moment calculations (derivation of expression not required), Schawartz-Christoffel transformations, potential flow between two parallel plates, potential flow in a sector.

Module-III
Boundary layer theory, Boundary layer thickness, Displacement thickness and momentum thickness, Prandtl boundary layer equations, Blasius solution for flow over a flat plate, Momentum integral equations, Pohlhausen approximation solution of boundary layer for non-zero pressure gradient flow, favorable and adverse pressure gradients, flow separation, vortex shedding, introduction to turbulent flow, mean and fluctuating components, concept of eddy viscosity, short notes of velocity measurement technique using (a) multi hole probes (b) Hot wire anemometers (c) LDV (d) PIV

References:
1. K Muralidhar, G Biswas, Advanced Engineering Fluid Mechanics
2. H. Schlichting, K. Gersen, Boundary layer theory.
3. V.L. Streetor, Fluid mechanics
4. Vuan, Elements of fluid mechanics.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Composite Materials:- Definition, characteristics, Classifications based on structure and matrices, Structural, functional sensory and smart composites, Advantages and limitations, History, Industrial scene, Applications.
Introduction to micro-mechanics-unidirectional lamina – laminar stresses– inter laminar stresses - static mechanical properties - fatigue properties - impact properties - environmental effects - fracture mechanics and toughening mechanisms, damage prediction, failure modes. Failure predictions - design considerations - codes - design examples.

Module II
Fiber reinforced plastics: Reinforcement fibres:- High strength man made (glass, carbon, aramid) and natural fibres, Structure, characteristics, Properties and applications. Whiskers:- Characteristics, properties and applications
Polymer matrix composites (PMC):- Thermo set, thermoplastic and elastomeric polymers, their properties, characteristics and utilisation as matrices. Manufacturing methods for thermo set thermoplastic and elastomeric PMC. Their characteristic features. Properties of composites made and their applications. Metal Matrix Composites (MMC): Metals. Inter-metallics and alloys used for MMC and their properties, Manufacture of MMC, their properties-characteristics and applications.

Module III
Ceramic Matrix Composites (CMC):- Classification of ceramics and their potential role as matrices. Ultra structure processing of ceramics, Manufacture, properties and applications of CMC using fine ceramics, carbon, glass, cement and gypsum as matrices. Post processing operations:- Machining, cutting, polishing, welding of thermoplastic PMC, bonding, riveting and painting. Advanced post processing methods like ultrasonic welding, plasma coating, waterjet cutting and laser machining. Quality, inspection and non-destructive testing.

References
7. Chawla KK., Ceramic Matrix Composites Chapman & Hall

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Information Technology – Introduction – applications – The Internet and World wide web – the GPS.

MODULE II
Spread sheet applications – Data base applications – Queries – Internet connectivity.

MODULE III

REFERENCES

Note :- This course is intended to provide an overview of fundamentals and concepts of IT useful to an undergraduate student in Mechanical Engineering only.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Ultrasonic testing of materials: Advantages, disadvantages, Applications, Generation of Ultrasonic waves, general characteristics of ultrasonic waves: methods and instruments for ultrasonic materials testing: special techniques.

Module III

REFERENCES:
1. Non-Destructive Testing by P. Halmshaw

University Examination:

Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60).
Module I

Module II

Module III

REFERENCES:
1. Powder Metallurgy-ASM Vol. II.
3. Powder Metallurgy-Thumler
5. Powder Metallurgy-Gopal S. Upadhayay
6. Cemented Tungsten carbide Production, properties and testing, Gopal S. Upadhayay.

University Examination:
Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60).
Module I
Organization and management- Forms of ownership, principle of transport, management, internal organization, centralized & decentralized condition (Engineering, traffic and administration), administration, recruitment and training, welfare, health and safety. Management Training and Operations- Basic principles of supervising, Organising Time and people, Job instruction training - Training devices and techniques - Driver and mechanic hiring - Driver checklist - Lists for driver and mechanic - Trip leasing

Module II
Route planning and Scheduling: Sources of traffic, town planning, turning points, stopping places, survey of rout, factors affecting frequency, direction of traffic flow, estimated traffic possibility. time table layout, use of flat graph method, preparation of vehicle and crew schedules, duty roster, use of vehicle running numbers, determination of vehicle efficiency, checking efficiency of crew, duty arrangements, duty of drivers and conductors. Vehicle maintenance, supply management and budget: Scheduled and unscheduled maintenance - Planning and scope - Evaluation of PMI programme – Work scheduling - Overtime - Breakdown analysis - Control of repair backlogs - Cost of options. Cost of inventory - Balancing inventory cost against downtime - Parts control - Bin tag systems – Time management - Time record keeping - Budget activity - Capital expenditures - Classification of vehicle expenses

Module III
Fleet Management, Data Processing And Fare Structure : Fleet management and data processing - Data processing systems - Software Model - Computer controlling of fleet activity - Energy management, Basis of fares, effect of competition and control, calculating average charge, zone systems, straight and tapered scales fare structure - Methods of fare collection - Preparation of fare table. Motor vehicle act: Importance of motor vehicle act, Schedules and sections - Registration of motor vehicles - Licensing of drivers - Control of permits - Limits of speed - traffic signs - Constructional regulations - types of driving licenses, procedure for obtaining driving license, registration of vehicle, types of permits, procedure for obtaining permits, third party insurance.

References:
1. Rev. W. Faulks -Road and Coach Operation
5. Kadiyali.L.R., " Traffic engineering and Transport Planning ".

University Examination:
Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60).
MODULE I
Airconditioning Fundamentals: Definition of Air Conditioning, Psychrometry and air composition Adiabatic saturation and Thermodynamic wet bulb temperature Basic air conditioning system - Location of air conditioning components in a car - Schematic layout of a refrigeration system. Compressor components - Condenser and high pressure service ports. Thermostatic expansion value - Expansion value calibration - Controlling evaporator temperature - Evaporator pressure regulator - Evaporator temperature regulator.

MODULE II

MODULE III
Air Routing & Temperature Control: Objectives - Evaporator care air flow through the Dash recirculating unit - Automatic temperature control – Duct system - Controlling flow - Vacuum reserve - Testing the air control and handling systems. Air Conditioning Service: Air conditioner maintenance and service - Servicing heater system Removing and replacing components. Trouble shooting of air controlling system – Compressor service.

References:
5. Leslie. F. Gamines &Boyce L. Dwiggin - Automotive Air Conditioning
6. Damkundwar - Refrigeration and Air Conditioning
7. C.PArora - Refrigeration and Air Conditioning -

University Examination:
Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60).
MODULE-I
General Introduction: Motor cycles, scooters, mopeds and three wheeled vehicles, classification, different arrangement of cylinders, carburetion system and operation. Power plants: Two stroke and four stroke, arrangements, engine ports, reed valves, valves and valve actuating mechanisms, valve timing, Types of scavenging processes, merits and demerits, scavenging efficiency. Scavenging pump,. Rotary valve engine lubrication and fuel supply systems in two wheelers, constructional features and types of oil seals, mufflers & silencers, Catalytic converters.

MODULE-II
Power transmission: Clutches, necessities, centrifugal clutch, multiple disc clutch, selective and progressive gear boxes, different types of synchronizers, gear drive, shaft drive and variable drive mechanisms and their constructional aspects. Electrical systems: Magneto ignition system, high tension and low tension magneto ignition, comparison with battery ignition system, electronic ignition systems like CDI, microprocessor controlled ignition system etc, starting motor, accessories horn, lighting system.

MODULE-III

References:
6. Service Manuals of popular Indian two and three wheeled vehicles

University Examination:
Question Paper consists of two parts. In Part A, 10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). In Part B, 2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60).
ELECTIVE II

08.606.1 ADVANCED MECHANICS OF SOLIDS

L-T-D: 3-1-0 Credits: 4

Module I
Analysis of stress; State of stress at a point; Rectangular stress components; stress components on an arbitrary plane; Principal stress and Principal planes; Planes of maximum shear; State of pure shear; Differential equations of equilibrium in rectangular co-ordinates; Analysis of stress in two dimensions; Plane stress and plane strain. Transformation of stresses. Analysis of strain, strain-displacement relations—Principal strains and principal axes. Compatibility conditions. Stress-Strain relations.

Module II
Energy methods; Reciprocal relations; Maxwell-Betti-Rayleigh reciprocal theorem; Castigliano’s I theorem; Fictitious load method; Theorem of virtual work; Castigliano’s II theorem; Engesser’s theorem.
Bending of beams; Straight beams and asymmetrical bending; shear centre; shear stresses in thin walled open sections; Bending of curved bars (Winkler–Bach formula)

Module III
Torsion - Torsion of General prismatic bars; Torsion of circular, elliptic and equilateral triangular bars; Membrane analogy. Torsion of thin-walled tubes. Torsion of bars with narrow rectangular cross-section. Torsion of thin-walled multiple cell closed sections, Torsion of rolled sections, Center of twist and flexural centre.

References:
1. L.S Srinath, Advanced Mechanics of Solids, T.M.H
2. Timoshenko and Goodier, Theory of Elasticity, Mc Graw Hill.
3. S.M.A Kazimi , Solid Mechanics, T.M.H.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Principle of MHD Generators – Choice of generator parameters – Applications.

Module II

Nuclear fusion- Fusion fuels and reactions- Sustained fusion reaction- Production and containment of plasma – Fusion – breeder concept.

Module III

Hydrogen- Introduction and Applications- Production, Storage and Transportation – production and application of methanol.

References :

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
OOPS and Java basics - Java virtual machine - Java platform API - extended security model - applet classes - exceptions and abstract classes - Java applet writing basics - GUI building with canvas - applet security - creating window applications - writing console applications - utility and math packages

Module II
Swing programming - working with swing components - using the clipboard - input/output streams - printing - working with 2D and 3D Graphics - using audio and video - creating animations
Java beans development kit - developing beans - notable beans - network programming - client and server Programs - naming and directory services - working with Java management APIs

Module III
Distributed application architecture - CORBA - RMI and distributed applications - working with remote objects - object serialization and Java spaces - Java IDL and ORBs, connecting to database - using JDBC - integrating database - support into web applications - Java servlets - JSDK - JAR files - Java native interface

References:
3. Holzner S., Java 2, Swings, Servlets, JDBC & Java Beans Programming, IDG Books

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Review of Elementary nuclear physics: Atomic structure – nuclear energy and nuclear forces – Nuclear fission.
Nuclear reactions and radiations – Principles of radio active decay interactions of an ray with matter – Neutron cross sections and reactions – The fission process – Chain reactions – Basic principles of controlled fusion.

Module II

Boiling water reactor. Description of reactor system – Main components – Control and safety features.

Module III

Reactor heat removal / equations of heat transfer as applied to reactor cooling – Reactor heat transfer systems – Heat removed in fast reactors.

References
2. S Glasstono, Source book on atomic energy – D Van Nostrand Co

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Introduction: Elements of mechanical processing systems – Definition of mechanical working – Hot and cold working – Comparison with other processing systems.
Need for preheating- Need for heat treatments after mechanical working – Heat treatment methods – Furnaces for pre heating and heat treatment

MODULE II
Materials for mechanical working - A brief survey of the characteristics and composition of the common ferrous and non ferrous alloys and non metallic materials used for mechanical working. Rolling Metals – Fundamental principles of metal rolling classification of rolled products, types and sizes – Basic principles of draughting schedule design and roll pass design (simple examples) Roll load and power required in rolling – Problems encountered and defects in rolling practice.

MODULE III
Forging, Extrusion and Wire drawing – Principles of product design and die design in forging – Calculation of forging loads and selection of hammers and process for forging – Design of extrusion and wire – drawing dies – Computation of power requirements problems encountered and defects in the above processes.
Press working of metals – Description and classification of the processes – Product and die design for shearing, blanking drawing and bending – Compound and progressive dies – Computation of capacities and tonnage requirements for blanking, piercing and drawing operations – Process selection and selection of process problems and defects in press working.

References:
1. Cambell, Principles of Manufacturing Materials and processing.
4. ASTME, Fundamentals of tool design.
5. Richard Little, Metal Working Technology.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3x20=60)
Module I
Definition - history and applications - propositional calculus - predicate calculus - inference rules - structures and strategies for state space search - heuristic search algorithms - heuristics in games - complexity issues - control and implementation of state space search - production systems - planning - the blackboard architecture

Module II
Knowledge intensive problem solving - expert system technology - rule-based expert systems - model based reasoning - case based reasoning - knowledge representation problem - reasoning with uncertain or incomplete information - statistical approach - non-monotonic systems - fuzzy sets - knowledge representation - languages - issues - network representation - conceptual graphs - structured representation

Module III
Languages and programming techniques for AI - overview of LISP - search - higher order functions and procedural abstractions - search strategies - pattern matching - recursion - interpreters - logic programming in LISP - streams and delayed evaluation - expert system shell in LISP - network representations and inheritance - CLOS
Introduction to understanding natural language - introduction to automated reasoning - introduction to machine learning

References:
5. Winston P.H., *LISP*, Addison Wesley

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
System concepts - components of a system - discrete and continuous systems - types of
system study - system analysis - system design and system postulation - system modelling-
types of models - system simulation - steps in a simulation study - comparison of simulation
and analytical models - Monte Carlo simulation - examples of simulation of single server,
single queue systems and simple inventory systems - concepts in discrete event system
simulation - event scheduling/time advance algorithm - modelling world views

Module II
Random number generation - techniques for generating random numbers - tests for random
numbers - frequency tests - the Kolmogorov-Smirnov test and the Chi-square test - random
variate generation - inverse transformation method - exponential, uniform and empirical
discrete and empirical continuous distributions - Input modelling for simulation - data
collection - identifying the distribution using histograms - parameter estimation - Chi-square
goodness of fit test Verification and validation of simulation models - verification of simulation
models - calibration and validation of models - face validity - validation of model assumptions
and validating input-output transformations - output analysis for a single model - types of
simulations with respect to output analysis.

Module III
Measures of performance and their estimation - output analysis for terminating simulations -
confidence interval estimation for a fixed number of replication - confidence intervals with
specified precision - output analysis for steady-state simulations - initialization bias -
replication method - sample size determination for a specified precision - batch means
method.
Simulation modelling and analysis of manufacturing systems - objectives - performance
measures - issues in simulation of manufacturing systems - simulation of simple job shop
manufacturing systems - Introduction to simulation software for manufacturing applications
- salient features of simulation languages such as general purpose simulation system (GPSS)
and simulation language for alternative modelling (SLAM) - salient features of simulators
such as WITNESS and ARENA

References:
 India Private Limited
 Wiley
 International Editions
 Hill International Editions

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
MODULE- I
Measurement of Temperature- Temperature scales, Basic fixed point- Measuring devices and their ranges- Electrical type and mechanical type- Measuring system for resistance thermometers and Thermocouples- Bridge circuits- Calibration- Filled system thermometers- Ambient temperature compensation.

MODULE – II

MODULE – III
Control system- Classification of control system- Block diagram- Rule of Block diagram algebra- Transfer functions, Set point- Identification of plat Characteristics- First order proportional and second order proportional elements- Dynamic response – Analogues circuits stability of control systems- Routh – Hurvitz criterion- Nyquist criterion.

REFERENCES:
1. R.K. Jain, Mechanical and Industrial Measurements.
4. A. E. Pribanco, Industrial Instrumentation.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.606.9 MATERIALS HANDLING

L-T-D: 3-1-0

Credits: 4

MODULE I

Importance of Materials Handling - Principles of Materials Handling – Principal groups of Materials handling equipments – General characteristics and applications of materials handling equipments – Modern trends in Materials handling.

MODULE II

MODULE III

REFERENCES

1. Rudanko, Material Handling Equipments.
3. A. Spivakvsky and V. Dyachkov, Conveying Machines -

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
L-T-D: 3-1-0

Credits: 4

MODULE I

MODULE II

MODULE III

References:
3. A. Guruvech and B. Sorekin- Tractors, M1R Publishers Moscow, 1975
4. Geleman and M. Maskovin- Farm tractors, MIR. Publishers, Moscow, 1975
6. Herbert Nicholos- Moving the earth.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module 1

Module II

Module III

REFERENCES

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Concept of accuracy and of machine tools: Part accuracy–errors, accuracy of machine tools-
spindle accuracy- displacement accuracy-errors due to numerical interpolation-definition of
accuracy of NC system-errors in the NC machines-feed stiffness-zero stability.

Module II
Static stiffness and its influence and inaccuracy due to thermal effects in the machine tools:
Overall stiffness of a lathe-compliance of work piece-errors caused by cutting forces
deflection in turning-boring-milling-heat sources-thermal effects-rate of thermal expansion.
Dimensioning accuracy and surface finish: Definition of terms – dimensional chains –
dimensional stepped shaft-assigning tolerances in the constituent dimensions-dimensional
chains – concepts of precision machining-finish turning-boring-grinding.

Module III
Processing of materials-electron beam machining-iron beam machining-micro forming,
diamond turning-micro positioning devices.
Smart structures, materials and micro actuators: Smart Structures-smart sensors-micro
valves-MEMS - micro motors - micro pumps - micro dynamometer - micro machines –
structures - cooling channels - micro optics - micro nozzles.

REFERENCES:
 Oxford University Press, 1996.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
08.606.13 ADVANCED MANUFACTURING PROCESSES

L-T-D: 3-1-0 Credits : 4

Module I

Advances in casting: Newer casting processes - plaster mold and ceramic mold casting – vacuum casting – Evaporative pattern casting, ceramic shell investment casting, slush casting, squeeze casting and semisolid metal forming-Rapid solidification for Amorphous alloys.

Module II

Module III

REFERENCES

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Scope of metallographic studies in materials science. Understanding image formation, resolution of a microscope, numerical aperture, magnification, depth of field and depth of focus. Important lens defects and their correction, principles of phase contrast. Bright field and dark field contrast, sample preparation. Optical microscopy, interference and polarized light microscopy, quantitative analysis using optical microscopy (inclusion analysis, grain size determination volume fraction of phases etc.)

Module II
Production and properties of X-rays, X-ray diffraction, Bragg's law of diffraction, Scattering of an electron by an atom, by a unit cell, structure factor and intensity calculations. Stereographic projection, Effect of texture, particle size, micro and macro strain on diffraction lines. Indexing of powder photographs. Chemical analysis by X-rays, Stress measurement, Particle size determination

Module III

References:
2. Elements of X-Ray diffraction : B.D Cullity, publishers addition, Wesley publishing company.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III

REFERENCES:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Jigs and fixtures – Necessity for jigs and fixtures – Elements of fixtures, Design considerations, locators, Types of locators clamping.
Work holding devices different types – Design of drill jigs, bush specifications. Fixture for lathe operations, milling fixtures, fixtures for CNC machines, flexible fixtures, modular fixtures.

MODULE II
Press work tools, Blanking and piercing tools, Load variation during blanking – Reduction of cutting load stock step, striper, kneecleant plates. Types of dies, simple die, compound die, progressive die, strap layout.

MODULE III

References:
1. Cysil Donaldson, Tool Design, TMH
2. William and Boyes, Jig and Fixture Design Hand Book.
4. V.Koraskove Mir., Fundamentals of Fixture Design.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.606.17 VEHICLE BODY ENGINEERING

L-T- D; 3-1-0 Credits 4

MODULE-I
Modern materials for vehicle design: Introduction, Structure and manufacturing technology of automotive materials, Mechanical and physical properties of automotive materials, Material selection for automotive components,
Body design: coach and bus body styles, typical layout of bus and coach bodies, typical layout of commercial vehicle types, passenger car body styles,
Chassis design and analysis: chasis type, structural analysis by simple structural surface method, body frame construction, unitized frame and body construction, FR, FF, & MR body structure details

MODULE-II
Ergonomics method and tool to promote occupant accommodation: standards guidelines and recommendations, Anthropometry, 2-dimentional manikins, package drawing, Quick and dirty mock ups, vehicle seating configuration(based on SAE).
Crash testing: Human testing, Crash worthiness, Compliance testing, Component testing, Competitive race testing.
The role of endurance and durability studies in the manufacturing of vehicles. :Introduction, Failure and reliability, Testing and failure prediction, importance of avoiding failures

MODULE-III
Introduction to vehicle safety: Basic concept of vehicle safety-underlying principles, safety factors, warning and instructions, shielding, interlocking.
Minor auto body repairs: types of body fillers and its application, repairing rust damage, Painting: Corrosion and anticorrosion method .Paint and painting process
Diagnosing major collision damage: impact and its effect on a vehicle, determining the conditions of the collision, Porto power, the dozer technique, operation of conventional Porto power, operation of dozers, body bay systems (flexi-force), general repair techniques. Body alignment- straightening equipment, in-floor systems, chainless anchoring systems

References:
1. Pauloski- Vehicle Body Engineering
3. J. Fairbrother – Principles and practice of Vehicle body repair, Hutchinson
4. S.P. Page- Body Engineering
5. Paul Browne- Auto care manual
8. Julian happian-smith An introduction to modern vehicle design-SAE 2004

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.606.18 VEHICLE PERFORMANCE AND TESTING

L-T- D; 3-1-0 Credits 4

MODULE-I
Laboratory testing: Basic engine parameters, Measurement of BHP, IHP, Engine testing on
dynamometers, different types of dynamometers- hydraulic, eddy current etc, engine
analyzers- for petrol and diesel engines, FIP calibrating and testing, exhaust gas analyzers -
various types- Orsat apparatus, infrared gas analyzers, smoke meter.
Vehicle testing on chassis dynamometers: two wheel & four wheel dynamometers, vehicle
testing lanes - side slip testers, wheel alignment testing, wheel balancing, brake testers,
head light alignment testing.

MODULE- II
Noise vibration and Harshness: Review of vibration fundamentals, vibration control,
fundamentals of acoustics, human response to sound, automotive noise criteria, Standard
noise measurement methods, Noise inside and outside the vehicle, sources of vehicle noise-
intake and exhaust noise, combustion noise, mechanical noise, noise from auxiliaries, wind
noises, transmission noises, brake squeal, structure noise, noise control methods.

MODULE-III
Vehicle performance: Methods for evaluating vehicle performance- energy consumption in
conventional automobiles, performance, emission and fuel economy, Operation of full load
and part conditions, effect of vehicle condition, tyre and road condition and traffic condition
and driving habits on fuel economy, CAFÉ standards.
Road and track testing: Initial inspection, PDI, Initial free services, engine running in and
durability, intensive driving, maximum speed and acceleration, brake testing on the road, hill
climbing, handling and ride characteristics, safety, mechanism of corrosion, three chamber
corrosion testing, wind tunnel testing, road testing, test tracks.

References:
3. Dr. N.K.Giri- Automotive technology – Khanna publishers, 2009
4. SAE Transaction papers- 831814,820346,820367,820371 and 820375
5. Julian Happian-Smith – An introduction to vehicle design – SAE, 2004
6. Advanced automotive technology – visions of a super efficient family car- technical paper -
 OTA-ETI-638, 1995

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
Module-I
Introduction: Physical, chemical & combustion properties of IC engine fuels, structure of petroleum, petroleum refining process-thermal cracking, catalytic cracking, polymerisation, alkylation, Isomerisation, reforming & blending, products of refining process, Indian standard for gasoline, gasoline blends, non-petroleum fuels, fuel additives.
Fuels for SI engines: Requirements of an Ideal gasoline, volatility of liquid fuels, effect of volatility on engine performance-ASTM distillation curve, winter and summer gasoline, knock rating of SI engine fuels, octane number and octane number requirement, sensitivity & performance number, numerical examples- volumetric and gravimetric analysis, a/f ratio, air requirement.

Module-II
Diesel engine fuels: Requirements for diesel fuel, handling & storage-properties of diesel, smooth and efficient burning – volatility, ignition quality, cetane number, diesel index, cleanliness, diesel blends, Indian standard for diesel.
Gaseous fuels: LPG as an IC engine fuel, natural gas – CNG and LNG, advantages of gaseous fuels, biogas, producer gas, engine modifications to run on gaseous fuels, dual fuel and multi fuel application.

Module-III
Alternate fuels: Alcohols for SI engines- manufacture of methanol, manufacture of ethanol, comparison of properties of alcohols and gasoline as SI engine fuels, engine performance with pure alcohols, alcohol gasoline fuel blends-gasohol- E85
Alternate fuels for Diesel engines: Alcohols as diesel fuels, vegetable oils as diesel fuels, straight vegetable oils and biodiesels, performance properties of engines with biodiesel, Indian specification for biodiesel,

References:
1. Mathur & Sharma – IC engines, Dhanpatrai publications
2. Dr.N.K.Giri- Automobile technology, khanna publications
4. David Powell and Richard P. Brennan- The Automobile technology and society Printice Hall.
7. Energy research group- Alternate liquid fuels Willey Eastern Ltd
8. T.N Vezgirigiu- Alternative energy sources

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
ELECTIVE III

08.706.1 COMPUTER GRAPHICS

L-T-D: 3-1-0

Credits: 4

Module – I
Introduction to computer Graphics, Description of graphic devices - Graphic standards.
Colour graphic display techniques.
Graphic primitives- Circle generation algorithms – text generation. Polygons, Polygon filling

Module – II
Transformation: Simple problems on 3D transformations and applications, Viewing
transformations, Windowing, Clipping, Cohen-Sutherland outcode algorithm, Sutherland-
Hodgman Algorithm, Clipping of polygons.
Projections - Perspective geometry – Orthographic and Oblique projections – perspective
transformations.

Module – III
Mathematical formulations on: Plane curves – Non parametric curves – space curves –
Representation of space curves – cubic spline – Bezier curves , B- Spline curves , Fractals,
NURBS etc..
Mathematical formulation on Surface description and generation- Surface of revolution –
Sweep surfaces, quadric surfaces, Solid modeling techniques etc.
Hidden line and hidden surfaces , Z-Buffer algorithm , Scan Line algorithm for curved
surfaces.

References:
1. David F. Rogers & J.H Adams : Mathematical Elements of Computer Graphics ; 2nd
 India Private Ltd
 Editions.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Review of the fundamentals of classical thermodynamics – Multi phase and multi component systems – Free energy functions – Applications of free energy functions to phase changes – Clausius – Clayperon equations – Binary systems containing liquid and solid phases. Thermodynamics of reactive mixtures – Bond energy, heat of formation, heat of reaction – Adiabatic flame temperature entropy changes for reacting mixtures – Chemical equilibrium – Equilibrium criteria – Evaluation of equilibrium constants and equilibrium composition – Simple numerical solutions.

MODULE II

MODULE III

REFERENCES
1. J.P. Holman, Thermodynamics.
2. Van Wylon, Thermodynamics.
3. Lay, Thermodynamics.
4. Myron Tribus, Thermostatics and Thermodynamics.
5. Kennath Wark, Thermodynamics

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.706.3 INDUSTRIAL HEAT TRANSFER

L-T-D: 3-1-0
Credits: 4

MODULE I

Principles of Convection – Viscous flow, different hydrodynamic boundary layer flow regimes and flat plates – Laminar boundary layer on a flat plate – Momentum equation of the laminar boundary layer with constant properties – Internal Momentum analysis of laminar boundary layer. Energy Equations – Significance of Prandtl Number. Flat plate heat transfer – Conduction by integral methods (Simultaneous development of hydrodynamic and thermal boundary layer only)

MODULE II

Furnaces – Furnace geometry – Variation of temperature with time – Variation of temperature within the furnace – Representation of real gases – Heat transfer between real surfaces

MODULE III

Boiling heat transfer, forced convection boiling curve saturated forced convective boiling in a round tube. The two phase forced convection and nucleate boiling regions. Critical heat flow in forced convective flow –Elementary concepts.

The basic processes of condensation – Liquid formation, nucleation of drops at solid surfaces, droplet growth – Film condensation on a vertical flat plate – Nusselt equation for a laminar film – Improvements to the original Nusselt theory – The influence of turbulence – Condensation of horizontal tubes – Condensation within a vertical tube – Drop wise condensation.

Elementary concepts of: Heat transfer in magneto fluid dynamic (Transpiration cooling, low density heat transfer and ablation.) (Description only).

REFERENCES

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III
Recent Developments in maintenance methods-RCM-CBM-DMS-TPM etc.

REFERENCES

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Linear elastic fracture mechanics (LEFM): Elastic stress field approach - mode I elastic stress field equations - expressions for stresses and strains in the crack tip region - finite specimen width - superposition of stress intensity factors (SIF) - SIF solutions for well known problems such as centre cracked plate, single edge notched plate, and embedded elliptical cracks

Crack tip plasticity: Irwin plastic zone size - Dugdale approach - shape of plastic zone - state of stress in the crack tip region - influence of stress state on fracture behaviour

Module II
Energy balance approach: Griffith energy balance approach - relations for practical use - determination of SIF from compliance - slow stable crack growth and R-curve concept - description of crack resistance

LEFM testing: Plane strain and plane stress fracture toughness testing - determination of R-curves - effects of yield strength and specimen thickness on fracture toughness - practical use of fracture toughness and R-curve data

Elastic plastic fracture mechanics (EPFM): Development of EPFM - J-integral - crack opening displacement (COD) approach - COD design curve - relation between J and COD - tearing modulus concept - standard J_{lc} test and COD test

Module III
Fatigue crack growth: Description of fatigue crack growth using stress intensity factor - effects of stress ratio and crack tip plasticity - crack closure - prediction of fatigue crack growth under constant amplitude and variable amplitude loading - fatigue crack growth from notches - the short crack problem

Sustained load fracture: Time-to-failure (TTF) tests - crack growth rate testing - experimental problems - method of predicting failure of a structural component - practical significance of sustained load fracture testing

Practical problems: Through cracks emanating from holes - corner cracks at holes - cracks approaching holes - fracture toughness of weldments - service failure analysis - applications in pressure vessels - pipelines and stiffened sheet structures

References:
4. Prashant Kumar, Elements of Fracture Mechanics, Wheeler Publishing

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction to marketing - concept of market and marketing - marketing environment - controllable factors - factors directed by top management - factors directed by marketing - uncontrollable factors - demography, economic conditions, competition, social and Marketing planning - marketing planning process - Boston consultancy group model - marketing mix - marketing mix variables. Developing, testing and launching of new products.

Module II
Market segmentation and market targeting - introduction to segmentation - targeting and product positioning.
Marketing research - need and scope - marketing research process - research objectives, developing research plan, collecting information, analysis, and findings - consumer behaviour - factors influencing consumer behaviour - perceived risks - product life cycle - marketing strategies for different stages of product life cycle

Module III
Marketing communication - marketing mix variables - steps in developing effective communication - identification of target audience - determination of communication objectives - designing the message - selecting the communication channels - promotion mix evaluation - advertising and sales promotion - factors in advertising - sales promotion tools. New trends in marketing- Brand management - significance of branding to consumers and firms

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Entrepreneurial perspectives - understanding of entrepreneurship process - entrepreneurial decision process - entrepreneurship and economic development - characteristics of entrepreneur - entrepreneurial competencies - managerial functions for enterprise

Module II

Module III
Entrepreneurship in international environment - achievement motivation - time management - creativity and innovation structure of the enterprise - planning, implementation and growth. Technology acquisition for small units - formalities to be completed for setting up a small scale unit - forms of organizations for small scale units - financing of project and working capital - venture capital and other equity assistance available - break even analysis and economic ratios technology transfer and business incubation

References:
5. Dr Patel V.G., Seven Business Crisis, Tata McGraw Hill

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I

Fluid power pumps and motors – Types of pumps – Characteristics – Hydraulic cylinders and rams – Fluid power pumping systems and components.

MODULE II

Fluid temperature control – Fluid pressure control – control valves – Sequence valve – Counterbalance valve-unloading valve – Friction control valve – Servo systems.

MODULE III

Industrial hydraulic circuits - Circuit design for – shaper, grinder, material-handling equipments processes -Miscellaneous circuits.

REFERENCES

1. John pippon and Tylor Hicks, Industrial Hydraulics.

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module-II
One dimensional elasticity problems - discretisation of domain into elements - generalised coordinates approach - derivation of elements equations - assembly of element equations - transformation matrices - global equations, load vector, properties of stiffness matrices, imposition of Boundary conditions - penalty and elimination approach, multi-point constraints. Finite element formulation of plane trusses, beams and beams on elastic supports.

Module-III

References:-

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II
Processes - drawing and extrusion - process classification - lubrication - temperature effects - analysis of the processes of drawing and extrusion of wire and strip through friction less dies and dies with friction - production of seamless pipe and tubes - analysis - residual stresses in rods - wires - tubes, deep drawing Classification of rolling processes - hot rolling - cold rolling - rolling of bars and shapes - analysis of rolling process in conditions of plane strain. Classification of forging process - open die forging - closed die forging - analysis of forging process in conditions of plane strain - forging allowances and tolerances - sheet metal forming, shearing, blanking, bending and stretch forming

Module III
Slip line field theory - incompressible two-dimensional flow - slip lines - equilibrium equations referred to slip lines - Henkeys theorem - hodographs - simple slip line field analysis in extrusion - compression of block between parallel plates - strip load on semi-infinite body - lower and upper bound theorems with proofs and applications

References:
4. Chen W.F. & Han D.J., *Plasticity for Structural Engineers*, Springer Verlag

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Principal requirements and specifications – Requirements regarding quality of performance (Accuracy and surface finish) – Productivity(Rate of motel renewal) – Economy and efficiency of machine tools.

MODULE II
Hydraulic power, Transmission systems used in machine tools and their various elements – A few common hydraulic circuits used the effect movement of tools slide and work tables. Miscellaneous – Copying devices – Automates of various kinds feasibility determination for automation – Automatics and assembly line layout – unit heads and transfer machines - Vibration isolated tool holders – Friction and lubrication in machine tools.

MODULE III
Trends in the design of modern machine tools – Aims and future development - Design for improved static and dynamic performance – Fundamental aspects of numerical control – Adaptive control and hydraulic control of machine tools.

REFERENCES
2. Design principles of metal cutting machine tools – Koenisberger
4. The Design and Construction of Machine tools – M.C. Town
5. Machine tools design course – Central Machine tool Institute
6. Machine tools design Volume 1,2,3,4 – N. Acherkan

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
The need of the process-classification - Energies employed in the processes- EDM, EC, USM, LBM, PAM, AJM, WJM etc.
Electrical Discharge Machining Process, operating principles-Breakdown mechanism-Dielectric fluid-Electrode material-Tool wear – Power generator circuits- Process parameters - Metal removal rate - wire out EDM - Recent Developments in EDM. Applications

Module II
Electro Chemical Machining Process-principles-Equipment-Analysis of metal removal-tool material-Insulation-Process parameters-ECH,ECG etc. Applications
Electron Beam Machining Process, Principle-gun construction - Types of gun - Vacuum and non-vacuum technique Applications
Laser Beam Machining Process, principles, pumping processes, emission types-beam control. Applications

Module III
Ultrasonic Machining Process-working principles-types of transducers-concentrators-nodal point clamping-feed mechanism-metal removal rate-Process parameters. Applications
Abrasive Jet Machining Processes-Principle-Equipment-Metal removal rate process parameters. Applications
Water Jet Machining Process-Principle-Equipment. Applications

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Energy transfer between fluid and rotor, classification of fluid machinery, dimensionless parameters, specific speed, applications, stage velocity triangles, work and efficiency for compressors and turbines.

Module II
Centrifugal fans and blowers: Types, stage and design parameters, flow analysis in impeller blades, volute and diffusers, losses, characteristics curves and selection, fan drives and fan noise.
Centrifugal Compressors: Construction details, types, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.

Module III
Axial flow compressors: Stage velocity triangles, enthalpy-entropy diagrams, stage losses and efficiency, work done factor, simple stage design problems and performance characteristics.
Axial and radial flow turbines: Stage velocity diagrams, reaction stages, losses and coefficients blade design principles, testing and performance characteristics.

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I

MODULE II

MODULE III
REFERENCES:
1. J.P. Holman, Experimental Methods for Engineers.
3. Donald P. Eckman, Industrial Instrumentation.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.706.15 MECHANICAL VIBRATION AND NOISE CONTROL

L-T-D: 3-1-0 Credits : 4

MODULE I
Introduction – Harmonic motion – Beat frequency – Equations of motion – Concepts of forces and equilibrium – Systems with one degree of freedom – Free and forced vibrations with undamped and damped systems (Review)
Two degrees of freedom systems : Equations of motions for free and forced vibration without and with damping – Use of influence coefficients – The work and energy approach – Solutions to free, forced and damped vibrations and torsional systems – Dynamic absorbers periodic and Non periodic.

MODULE II
Solutions to Differential Equations, Laplace Transforms.
Jump phenomenon – Effect of damping – Self excited Oscillations.

MODULE III
Introduction to sound and vibratic wave motion – One dimensional plane waves – Characteristics impedance – Decibel seat power, density and intensity – Sound transmission through one and two intervening media.
Measurement of Sound – Loud speakers and microphones – Their characteristics, Band pass filters, graphic level recorder, Narrow Band Analysers - Measurement in reverberation and Vachaic chamber – Hearing mechanism of hearing and perception of sound (Description only)

REFERENCES
4. Tee. Hinkle and Morse, Mechanical Vibrations.
8. C.Harris, Hand Book on Noise control.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction: Objectives of failure investigation, Collection of background data- service history, photographic records, Selection of samples for various conditions, Preliminary examination of the failed part – visual inspection and non destructive techniques for failure investigation- Magnetic particle inspection, Liquid penetrant inspection, Eddy current inspection, ultrasonic inspection, radiography, acoustic emission inspection, experimental stress analysis, Mechanical testing, limitations of tensile testing, Selection preservation and cleaning of fracture surfaces- cleaning, sectioning, opening secondary cracks

Module II

Module III
Chemical analysis- Analysis of bulk materials, analysis of surfaces and deposits, spot tests, Applications of fracture mechanics: Fracture mechanics concepts- Linear elastic fracture mechanics, Elastic-Plastic fracture mechanics (basic concepts), plane stress and plane strain, Fatigue crack growth rate their use in failure analysis, fracture toughness testing- Plane strain fracture toughness test, COD test, Simulated service testing, Analyzing the evidences formulating conclusions and report writing, Case studies of failures: failures of shafts, failures of heat exchangers

References:
1. ASM Handbook Volume 11: Failure analysis and Prevention
2. Fracture Mechanics by Prashant Kumar Wheeler Publishing
3. Mechanical Metallurgy by Dieter, McGraw Hill

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
General classification of Cutting Tool-single point multi point cutting tools and form tools- Cutting tool nomenclature, systems-types of single point cutting tools-Left hand , right hand , straight shank, bent shank-offset and stepped. Geometry-Cutting tool signature-Effect of cutting tool geometry in metal cutting .Mechanism of metal removal-Mechanism of chip formations-classes of chips Friction in metal cutting –Methods of reducing friction –Chip control and chip breaker-Primary deformations on shear zone-secondary deformations on rake face.

MODULE II

MODULE III

References:-
1. Sen and Bhattacharya, Principle of metal cutting.
2. Shaw M.C, Metal cutting principles.
5. Production Technology, HMT
7. Tool Manufacturing Engineers Hand Book, ASTME

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Ceramic and composite biomaterials: Introduction, Bio inert Bio Ceramics, Biodegradable ceramics, Bioactive ceramics, deterioration of ceramics, manufacturing techniques, Biocompatibility and Application of Composite Biomaterials.

Module III

REFERENCES

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Extensive definition of Concurrent Engineering (CE) - CE design methodologies - Organizing for CE - CE tool box collaborative product development. IT support - Solid modeling - Product data management - Collaborative product commerce. Artificial Intelligence- Expert systems - Software hardware co-design.

Module II
Life-cycle design of products - opportunity for manufacturing enterprises - modality of Concurrent Engineering Design - Automated analysis idealization control - Concurrent engineering in optimal structural design - Real time constraints. Manufacturing competitiveness - Checking the design process - conceptual design mechanism – Qualitative physical approach - An intelligent design for manufacturing system. JIT system - low inventory - modular - Modeling and reasoning for computer based assembly planning –

Module III

REFERENCES

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.706.20 INDUSTRIAL AUTOMATION

L-T-D: 3-1-0 Credits : 4

Module I
Introduction: Basic concept of Automation, Types of Automation, Feasibility etc. Industrial Hydraulics: Introduction, basic concepts, Hydraulic fluids, Classification and properties of hydraulic fluids, Contaminates in hydraulic system, control and cleanliness standards, Fluid power generators, i.e. Gear, Vane, Piston pumps, linear and Rotary Actuators, Direction Control Valves, types, actuation methods, pressure control valves; pressure reducing valves, pressure relief valve, Unloading valve, Sequence valve, Counterbalance valve, Flow control valves simple and pressure compensated type.

Module II
Pneumatics: Introduction, Basic components, Source, storage and distribution, treatment of compressed air, linear and Rotary actuators, Direction control valves – types, actuation methods, pressure control valves, logic devices – twin pressure valve, shutter valve, time delay valve, Pneumatic circuit design and analysis, conventional as well as computer aided design. Robotics: Basic concepts, classification based on Geometry, programming, drives, work volume of robots world and joint coordinates various joints, DOF, end effectors – Types and uses, Sensors in Robots, programming – Teach pendant and Computer programming, Introduction to forward and inverse kinematics, Applications of Robots.

Module III

Reference

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.706.21 ALTERNATE ENERGY SOURCES

L-T- D; 3-1-0 Credits 4

MODULE-I
Introduction: Need for non-conventional energy sources, energy conservation in transportation sector, alternative energy, alcohol, hydrogen, biomass, and electric energy.
Alcohol: Methanol and Ethanol production methods, properties of methanol and ethanol as engine fuels, use of alcohols in SI engines, performance of methanol and gasoline blends.
Combustion characteristics of alcohols in S.I engines, use of alcohols in CI engines, different methods of use- Alcohol Diesel emulsions, dual fuel systems, Flex fuel Vehicles (FFV)

MODULE-II
Gaseous fuels: Biogas production, description of biogas plant, application of biogas as a single fuel and dual fuel, performance of LPG, property & its use in SI engines, fuel metering system, natural gas and producer gas - use in S.I. and C.1 engines.
Vegetable oil: Vegetable oil properties, Production of Bio-diesel, esterification of vegetable oil, Soya bean diesel, rapeseed oil, rice bran oil etc., diesel and vegetable oil blends, and engine performance with vegetable oil.

MODULE-III
Solar power: Collection and storage of solar energy, collection devices, flat plate collectors, concentrating type collectors, principle and working photovoltaic conversion, application to automobiles.
Electric vehicles: Design considerations, limitations, batteries for electric vehicles, types & capacities, driving requirements, applicability of electric cars, comparative use of fuel and energy recharging, Hybrid vehicles - types and layouts.

References:
2. David Powell and Richard P. Brennan- The Automobile technology and society Printice Hall.
4. Tom Koppel- Powering the future, SAE
6. Bob Brant.- Build your own Electric Vehicle, SAE
7. SAE papers: 73802, 750121, 750118, 741008
8. Energy research group- Alternate liquid fuels Willey Eastern Ltd,
9. New Delhi, 1990
10. T.N Vezgirigiu- Alternative energy sources

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module-I
Introduction: General Scenario on automotive Pollution, Pollutants-sources-formation-effects on human beings and environment, Green house gases and global warming, transient operational effects on pollution, Engine Combustion and Pollutant Formation: HC, CO, NOx, Particulate Matters, Aldehyde emissions, Effect of operating variables on emission formation.

Module-II
Control Techniques for SI and CI: Basics of diesel combustion - Smoke emission in diesel engines - NO emission from diesel engines – Particulate emission in diesel engines. Color and Aldehyde emissions from Diesel engines - Effects of operating variables on emission formation.
Design changes, optimization of operating factors, Control of Crankcase emission, Evaporative emission, Canisters, Exhaust emission - exhaust gas recirculation, air injector PCV system, thermal reactors, catalytic converters

Module-III

References:
7. Automobiles and Pollution SAE Transaction, 1995

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
The process of technological innovation - factors contributing to successful technological innovation - the need for creativity and innovation - creativity and problem solving - brainstorming - different techniques.

Invention and Creativity - Intellectual Property (IP) - Importance - Protection of IPR - Basic types of property (i. Movable Property ii. Immovable Property and iii. Intellectual Property).

Definitions - Industrial Designs and Integrated circuits - Protection of Geographical Indications at national and International levels - Application Procedures

Indian Position Vs WTO and Strategies - Indian IPR legislations - commitments to WTO-Patent Ordinance and the Bill - Draft of a national Intellectual Property Policy - Present against unfair competition.
Design of prototype - testing - quality standards - marketing research - introducing new products.
Creative design - Model Preparation - Testing - cost evaluation - Patent application

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
ELECTIVE IV

08.805.1 EXPERIMENTAL STRESS ANALYSIS TECHNIQUES

L-T-D: 3-1-0 Credits: 4

MODULE I

Basic concepts: The generalized basic systems – Definition – Stress at a point - Stress equation of equilibrium – Principal stress – Two dimensional stress systems – Strain and stress relations – Principal strain – Strain compatibility – Plane stress – Plane stress and strain problems –

MODULE II

MODULE III

REFERENCES
1. Photo elasticity - M.M.Frocht
2. Experimental stress analysis – J.W.Dally and W.P.Railey
3. Applied stress Analysis – Durelli and Philips
5. Moire Fringes Strain Analysis – Pericles Theocaries

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module – I
The atmosphere-characteristics of troposphere, stratosphere, thermosphere, and ionosphere - pressure, temperature and density variations in the atmosphere. Application of dimensional analysis – aerodynamic force – model study and similitude. 2D aero foils - Nomenclature and classification- pressure distribution in inviscid and real flows- momentum and circulation theory of aerofoil- characteristics. 3D or Finite aero foils – effect of releasing the wing tips- wing tip vortices- replacement of finite wing by horse shoe vertex system- the lifting line theory-wing load distribution – aspect ratio, induced drag- calculation of induced drag from momentum considerations. Skin friction and from drag- changes in finite wing plan shape.

Module II
Propellers – momentum and blade element theories – propeller coefficients and charts. Aircraft performance-straight and level flight – power required and power available graphs for propeller and jet aircraft-gliding and climbing – rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide- take off and landing performance – length of runway required- aircraft ground run- circling flight – radius of tightest turn-jet and rocket assisted take –off- high lift devices-range and endurance of airplanes-charts for piston and jet engine aircrafts.

Module III

References:
1. Mechanics of flight. A. C. Kermode
2. Aerodynamics for Engineering Student Houghton and brock.
3. Fundamentals of Aerodynamics Anderson
4. Aircraft Instruments and Integrated systems- EHJ Pallett

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Design of layout of factories, Office, Storage area etc. on consideration of facilities of working people, Storage facilities and general equipment for amenities of working people – Product, Process and combination layout – Systematic layout planning – Design of Assembly lines, Line balancing methods, Computer applications in layout designs.

Module II
Environmental aspects like lighting, Ventilation, dust control, humidity. Different type of Plant services like steam compressed air etc. – Plant safety, Elements off Industrial safety- Causes and prevention of accidents – Pollution and environmental consideration.

Module III
Material handling system and equipment – Material handling in Plants, Stores and warehouses, Receiving and dispatching area – Choice of material handling equipment – Cost control in material handling. Equipment replacement – Repair, replacement depends on technical and economical consideration. Use of DCF techniques.

REFERENCE
1. Plant layout and Material Handling- John A Sehbin
2. Plant layout and Material Handling - James A Apple
3. Plant layout and Material Handling - A W Peymberton
4. FF & Control - G Aysan

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.805.4 ADVANCED DECISION MODELLING

L-T-D: 3-1-0 Credits : 4

module i

Development of operations research as a branch of knowledge since 2nd world war – Fields of application of operations.
Queuing theory – Birth and death processes – Basic queuing process – Single server and multiple server models – Poison input and exponential service – Limited source, limited queue etc. Priority disciplines – Practical applications.

module ii

Network theory – Maximal flow problems – Travelling salesman problems - network with PERT / CPM.
Introduction to dynamic Programming, Stochastic programming and integer programming
Inventory theory – deterministic inventory models.

module iii

reference

1. Introductions to operations research – Hillier and Lieberman ,Holden day.
2. Introductions to operations research – Wagner and Pranti ,Philips and Ravindran
5. Operations research - Taha, Mc graw Hill.

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Introduction to dynamical systems: discrete time systems - continuous time systems - autonomous and non autonomous systems - phase space and flows - attracting sets - concepts of stability

Equilibrium solutions: fixed points and stability of continuous - time systems - classification and stability of equilibrium solutions - fixed points of maps and their stability - local and global bifurcation of continuous systems - static and dynamic bifurcations - bifurcation of maps

Module II

Periodic solutions - periodic solutions of continuous - time dynamical systems - autonomous and non autonomous systems - limit cycle - floquet theory - poincare' maps - bifurcation - symmetry breaking - cyclic fold - period doubling - transcritical and Hopf bifurcations

Quasiperiodic solutions: Poincare' maps - circle map - construction of quasiperiodic solutions

Chaotic solutions of maps: dynamics of logistic equation - bifurcation diagram of one-dimensional maps - feigenbaum number - Henon map

Chaotic solutions of continuous systems: Duffing's equation - Rossler equations - period doubling and intermittency mechanisms

Module III

Experimental methods in chaotic vibrations: experimental system to measure the Poincare’ map of a chaotic physical system

Fractals and dynamical systems: Koch curve - cantor set - fractal dimension - measures of fractal dimension - capacity dimension - correlation dimension and Information dimension - fractal dimension of strange attractors

Tools to identify and analyze motions: time history - state-space and pseudo state space - embedding dimension and time delay - Fourier spectra, Poincare' sections and maps - lyapunov exponents

References:
3. Moon F.C., Chaotic and Fractal Dynamics, John Wiley
6. Peitgens, Jurgens & Saupe, Chaos and Fractals, Springer Verlag
7. Scheinerman E.R., Invitation to Dynamical Systems, Prentice Hall

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction - purpose of work holding devices - principles of jig and fixture design - construction methods and materials used - process planning and typical operation layout - product considerations - pre-design analysis - product analysis - operation analysis - machine analysis - operator analysis and cost analysis - examples of pre-design analysis - principles of locating and positioning - definition of location - basic principles - methods of location - pin and button locators - plane, concentric, spherical, radial and V-locators - redundant locators

Module II
Design and mechanics of clamping devices - principles of clamping - standard fixture components - types of clamps - strap, swing, hinge and two-way (multiple) clamps - wedge, pinch and magnetic clamps - latch and self locking clamps - pneumatic, hydraulic and pneumo-hydraulic clamps - design considerations in work holder design and selection - design calculations of lever type clamp - hook type clamp - wedge type clamp - screw clamps - mandrels and collet - chucks - worked examples

Module III
Fixtures - milling fixtures - slot and key-way milling fixtures - fixture for milling flanges - straddle milling fixtures - indexing fixture - face milling fixture with equalizers - profile milling fixtures - universal fixture for profile milling - boring and lather fixtures - fixture design - examples of design and drawing of milling fixtures for machining of simple components - fixtures for inspection testing and assembly - welding fixtures - economics
Drill Jigs - definition - drill guide bushings - jig feet and legs - types of drill jigs - template - vise - leaf box and tumble jigs - indexing jigs - jaw chucks - drive chucks - magnetic chucking devices - mandrels - machine vices - indexing tables and worktables - examples of design and drawing of drill jig for machining of simple components

References
1. Kempster M.H.A., "An Introduction to Jig and Tool Design", ELBS
2. ASTME, Fundamentals of Tool Design
7. Cole B., "Tool Design", Taraporevala

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.805.7 MULTIPHASE FLOW

L-T-D: 3-1-0
Credits : 4

Module I
Basic equations and empirical correlations for multi-phase flow - flow patterns - identification and classification - flow pattern maps and transition - momentum and energy balance - homogeneous and separated flow models - correlations for use with homogeneous and separated flow models - two phase flow through inclined pipes and singularities - void fraction and slip ratio correlations - influence of pressure gradient - empirical treatment of two phase flow - drift flux model - correlations for bubble, slug and annular flows - pressure losses through enlargements, contractions, orifices, bends and values

Module II
Boiling and multiphase heat transfer - vapour-liquid equilibrium mechanisms - pool boiling convective boiling - heat transfer in partial and fully developed sub-cooled boiling - void fraction and pressure drop in sub-cooled boiling - saturated boiling heat transfer - two phase forced convection laminar and turbulent flow solutions for film heat transfer - empirical equations for film boiling and transition boiling - burnout mechanism and correlations - critical coefficient in nucleate and convective boiling

Module III
Condensation - basic processes of condensation - mechanism of evaporation and condensation - film condensation on a planar surface - dropwise condensation - pressure gradient in condensing systems - methods of improving heat transfer coefficient in condensation.
Critical multiphase flows - mathematical models - critical flow criterion - compatibility conditions and their physical interpretation - experimental observations - propagation of small disturbances - pressure drop limitation effect - graphical representation of critical flow conditions

References:
1. Collier J.G., Convective Boiling and Condensation, McGraw Hill
2. Hsu Y.Y. & Graham R.W., Transport Processes in Boiling and Two Phase Systems, Hemisphere
4. Tong L.S., Boiling Heat Transfer and Two Phase Flow, Wiley

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.805.8 CONTROLS IN MACHINE TOOLS

L-T-D: 3-1-0
Credits: 4

MODULE-I

MODULE-II

MODULE-III
Programming: manual and computer aided programming- Programming languages- APT, ADAPT, EXAPT, Economics of numerically controlled machines, adaptive control principles.

REFERENCES:
1. Industrial Hydraulics- John Pippinger
3. CAD/CAM- Mikel P Groover
4. NC Machines & CAM- Kundra. C. K, P. N. Rao, N. K. Temeri

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Methods for determining stresses - Terminology and Ligament Efficiency - Applications.
Stresses in pressure vessels: Stresses in a circular ring, cylinder - Membrane stress
Analysis of Vessel Shell components - Cylindrical shells, spherical shells, torispherical
heads, conical heads - Thermal stresses - Discontinuity stresses in pressure vessels.

Module II
Design of vessels : Design of tall cylindrical self supporting process columns - supports for
short vertical vessels – stress concentration - at a variable thickness transition section in a
cylindrical vessel, about a circular hole, elliptical openings. Theory of reinforcement -
pressure vessel design.

Module III
Bucking and fracture analysis in vessels : Buckling phenomenon - Elastic Buckling of circular
ring and cylinders under external pressure - collapse of thick walled cylinders or tubes under
external pressure - effect of supports on Elastic Buckling of cylinders - Buckling under
combined External pressure and axial loading - Control and significance of Fracture
Mechanics in Vessels - FEM application.

References:
1. John F. Harvey, " Theory and Design of Pressure Vessels ", CBS Publishers and
2. Henry H. Bedner, " Pressure Vessels, Design Hand Book ", CBS Publishers and

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4
marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each,
from each module and student has to answer one from each module (3 x 20=60)
MODULE I

MODULE II
Lubrication : Role of lubrication in present day practice – Fundamentals of viscosity and viscous flow – Flow through capillary tubes – Parallel plates – Radial flow between parallel circular plates – Continuity equation and Raynold’s equation .

MODULE III
Analysis of hydrostatic oil pads – Load carrying capacity – Oil flow – Power loss – Application to thrust bearing , use of restrict hydro static squeeze films .
Analysis and application of Hydrodynamic Lubrication – Load carrying capacity , power loss and friction in ideal journal bearings – Use of linkage factors – Significance of Sommerfeld number – Eccentricity ratio – Unit load

References:
1. Basu, SenGupta and Ahuja, Fundamentals of Tribology, PHI.
2. Sushil Kumar and Srivatsava, Tribology in Industry, S.Chand Co.
3. Majumdar .B.C., Tribology

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction: History, Basic concepts of value engineering, development and scope of value management, value analysis, functions and value-Basic functions, Secondary functions values-Use value, Esteem value, Cost value and Exchange value Costing Vs Value engineering, principles of costing & cost estimation, benefits.
Steps in value engineering process-preparation problem selection, information, evaluation. Creation, selection and presentation, implementation and follow up.

Module II
Selection of project, team members, general phase, information phase, Creation phase, evaluation phase, investigation and implementation phase, audit. Project work: work sheets, objectives, techniques, guidelines, Checklist, cost worth model, role of creativity. Approaches-job plan, DARSIRI, FAST Diagram as a tool, examples on usage of these tools

Module III
Value Engineering cases: Value Engineering raises production and productivity, Value Engineering is intensive cost search, Value Engineering prevents unnecessary uses of resources. Methodology, Industrial cases - Product manufacturing, Chemical processing, Automated Production, Semi -Automated production.

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Introduction - FAQs about software engineering - professional and ethical responsibility - system modelling - system engineering process - the software process - life cycle models - iteration - specification - design and implementation - validation - evolution - automated process support - software requirements - functional and non-functional requirements - user requirements - system requirements - SRS - requirements engineering processes - feasibility studies - elicitation and analysis - validation - management - system models - context models - behaviour models - data models - object models - CASE workbenches

Software prototyping - prototyping in the software process - rapid prototyping techniques - formal specification - formal specification in the software process - interface specification - behaviour specification - architectural design - system structuring - control models - modular decomposition - domain-specific architectures - distributed systems architecture

Module II

Object-oriented design - objects and classes - an object oriented design process case study - design evolution - real-time software design - system design - real time executives - design with reuse - component-based development - application families - design patterns - user interface design - design principles - user interaction - information presentation - user support - interface evaluation. Dependability - critical systems - availability and reliability - safety - security - critical systems specifications - critical system development - verification and validation - planning - software inspection - automated static analysis - clean room software development - software testing - defect testing - integration testing - object-oriented testing - testing workbenches - critical system validation

Module III

Software evolution - legacy systems - software change - software maintenance - architectural evolution - software re-engineering - data re-engineering

Software project management - project planning - scheduling - risk management - managing people - group working - choosing and keeping people - the people capability maturity model - software cost estimation - productivity estimation techniques - algorithmic cost modeling, project duration and staffing quality management - quality assurance and standards - quality planning - quality control - software measurement and metrics - process improvement - process and product quality - process analysis and modeling - process measurement - process CMM - configuration management - planning - change management - version and release management - system building - CASE tools for configuration management

References:
1. Ian Sommerville, Software Engineering, Pearson Education Asia

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE –I
Introduction to Cryogenic Systems, Historical development, Low Temperature properties of Engineering Materials, Mechanical properties- Thermal properties- Electric and magnetic properties –Cryogenic fluids and their properties. Applications of Cryogenics: Applications in space, Food Processing, super Conductivity, Electrical Power, Biology, Medicine, Electronics and Cutting Tool Industry. Law temperature properties of engineering materials:

MODULE –II

MODULE –III
Cryogenic Refrigeration systems: Ideal Refrigeration systems- Refrigeration using liquids and gases as refrigerant- Refrigerators using solids as working media;, cryogenic fluid storage and transfer systems: Cryogenic Storage vessels and Transportation, Thermal insulation and their performance at cryogenic temperatures, Super Insulations, Vacuum insulation, Powder insulation, Cryogenic fluid transfer systems Pressure flow-level and temperature measurements.— Types of heat exchangers used in cryogenic systems. Cryo pumping Applications.

References:
3. Cryogenic Engineering, R. B. Scott
4. Cryogenic Engineering, J. H. Boll Jr

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Transducers, Leads & Electrodes: Transducers - transducers for biological applications - principles, different types - active and passive transducers, implantable transducers.

MODULE II
Biodynamics:- Mechanics of lower limb during standing and walking, Dynamics and analysis of human locomotion.
Introduction (Brief description only) to Diagnosis and Therapeutic equipments: Diagnosis equipments - BP monitors, ECG machine, EEG machine, EMG machine, PH meter. Therapeutic equipments - Pacemakers, Defibrillator, Heart - lung machine.

MODULE III

References

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module 1

Module II

Module III
References:
1. Ralph Remsberg, Thermal design pf electronic equipment, CRC Press LLC
2. Dave S. Steinberg Cooling Techniques for Electronic Equipment, John Wiley & Sons, Inc
4. J.P.Bardon,E.Beyna, J.B.Sauliniar, Thermal management of electronic systems

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module 1
Continuum Theory- The Continuum Concept, Continuum Mechanics
Essential Mathematics - Scalars, Vectors, and Cartesian Tensors, Tensor Algebra in Symbolic Notation, Summation Convention, Indicial Notation, Matrices and Determinants, Transformations of Cartesian Tensors, Principal Values and Principal Directions of Symmetric, Second-Order Tensors, Tensor Fields, Tensor Calculus, Integral Theorems of Gauss and Stokes

Module 2
Stress Principles - Body and Surface Forces, Mass Density, Cauchy Stress Principle, The Stress Tensor, Force and Moment Equilibrium, Stress, Tensor Symmetry, Stress Transformation Laws, Principal Stresses, Principal Stress Directions, Maximum and Minimum Stress Values, Mohr's Circles for Stress, Plane Stress, Deviator and Spherical Stress States, Octahedral Shear Stress
Kinematics of Deformation and Motion - Particles, Configurations, Deformation, and Motion, Material and Spatial Coordinates, Lagrangian and Eulerian Descriptions, The Displacement Field The Material Derivative, Deformation Gradients, Finite Strain Tensors, Infinitesimal Deformation Theory, Stretch Ratios, Rotation Tensor, Stretch Tensors, Velocity Gradient, Rate of Deformation, Vorticity, Material Derivative of Line Elements, Areas, Volumes

Module 3

References:
6. Y.C. Fung, First Course in Continuum Mechanics (1993) -

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Definition of a product - product concepts - product mix concepts - product classification
Product planning: Marketing plan - portfolio analysis - Market potential and demand forecasting.
Product market strategies - product life cycle – product lifecycle stages and corresponding strategies

Module II
New product development - The challenges of product development - Identification of customer needs - Phases in product development - Opportunity identification and selection - concept generation - concept/project evaluation - Development - Launch (Brief description only)

Module III
Understanding brands: Brands vs. products - Benefits of branding - brand attributes - significance of branding to consumers and firms - selecting brand name.
Brand awareness - types of brand awareness - Brand image - Brand identity - brand personality - brand positioning - creating core brand values - Bringing brand to life - growing and sustaining brand equity - customer based brand equity - sources of brand equity - managing brands - building branding strategies - brand extensions - branch licensing and franchising - global branding.

References:
2. Donald Lehman: Product management, Tata MacGraw Hill.
3. Keller, Kevin Lane : Strategic Brand management, Building, measuring and managing Brand equity.
5. Chunnawalla: Product Mmanagement, Himalaya publishing House

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module 1
Introduction – meaning of research- objectives of research-motivation in research- types of research-research approaches – significance of research- research methods Vs methodology – criteria for good research
Defining research problem- what is a research problem- selecting the problem- necessity of defining the problem- literature review – importance of literature review in defining a problem- critical literature review – identifying gap areas from literature review

Module II
Research design– meaning of research design-need– features of good design- important concepts relating to research design- different types – developing a research plan
Method of data collection–collection of data- observation method- interview method-questionnaire method – processing and analyzing of data- processing options- types of analysis- interpretation of results

Module III

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction and scope-Classification of nanostructures: Quantum dots, quantum wires, quantum wells, nanoclusters, nanotubes, super lattices, nanocrystalline materials-Effects of nanometer length scale – Changes to the system total energy, changes to the system structures- Effect of Nanoscale dimensions on various properties – structural, thermal, chemical, mechanical, magnetic, optical and electronic properties.

Module II
Fabrication methods: Top down and bottom up approaches-Top down processes: Milling, Lithographics, machining process, pulsed laser methods- Bottom up processes: Vapour phase deposition methods, PVD, CVD, electrodeposition, plasma assisted deposition process, MBE, chemical methods, colloidal and solgel methods

Module III
Applications of Nanotechnology (nano materials and devices)-Applications of nanocomposites, nanocrystalline materials, nanolayered structures, nanomagnetic materials-magneto resistance- Carbon nanotubes: SW, MW, nanostructured coatings- nano sensors: order from chaos, characterization, perception, nanosensor based on quantum size effect, Electrochemical sensors, Sensors based on physical properties, Nanobiosensors, smart dust- nanomachines: covalent and non covalent approaches, Molecular motors and machines, molecular devices, single molecular devices, practical problems with molecular device- nanofluids: nanoparticles, preparation of nanofluids, thermophysical properties of nanofluids in comparison with base fluid- nanoswitches - nano computers- nanofilters

References:
1. Nano science and Technology, V.S.Muralidharan, A Subramnya, Ane books Pvt Ltd
4. Nanomaterials, A.K. Bandyopdhay, New age international publishers
5. Nanotechnology, Jeremy Ramsden
7. Nanotechnology, Gregory Timp, Springer-Verlag,
8. Introduction to Nanotechnology, Charles P Poole, Frank J Owens, John Wiley and Sons.
9 Springer Handbook of Nanotechnology, Bharat Bhushan

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Cooling system: Methods of cooling – coolant types.

Module II

Brakes: Mechanical, hydraulic, vacuum and air brakes – antilock braking systems.

Module III

Types of wheel: Integrated rim – flat base rim alloy wheel – wheel balancing.

Tyres: Tubeless tyres – ply ratings – radial tyres.

References:
2. Practical Automobile Engineering, Station Abby, (Asia Publishing House).
4. Automotive Emission Control, W. H. Crouse
5. Internal Combustion Engine and Air Pollution, Edward F. Obert.

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Creep: Factors influencing functional life of components at elevated temperatures, definition of creep curve, various stages of creep, metallurgical factors influencing various stages, effect of stress, temperature and strain rate.
Design for creep resistance: Design of transient creep time, hardening, strain hardening, expressions of rupture life of creep, ductile and brittle materials, Monkman-Grant relationship.

Module II
Fracture: Various types of fracture, brittle to ductile from low temperature to high temperature, cleavage fracture, ductile fracture due to micro void coalescence-diffusion controlled void growth; fracture maps for different alloys and oxides.
Oxidation and hot corrosion: Oxidation, Pilling, Bedworth ratio, kinetic laws of oxidation-defect structure and control of oxidation by alloy additions, hot gas corrosion deposit, modified hot gas corrosion, fluxing mechanisms, effect of alloying elements on hot corrosion, interaction of hot corrosion and creep, methods of combat hot corrosion.

Module III
Super alloys and other materials: Iron base, Nickel base and Cobalt base super alloys, composition control, solid solution strengthening, precipitation hardening by gamma prime, grain boundary strengthening, TCP phase, embrittlement, solidification of single crystals, Intermetallics, high temperature ceramics.

REFERENCES:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III

REFERENCES:
3. “Occupational safety manual” – BHEL.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module-I

Module-II
Material selection, Performance characteristics of materials, Material selection process, Evaluation methods for materials, value analysis, weighted property index, cost versus performance relations, design examples, Role of processing in design, Design for Casting, Design for Machining, Design for welding, residual stresses in design, Design for assembly, Design for brittle fracture and fatigue fracture, design for corrosion resistance, designing with plastics.

Module-III
Economic decision making, cost comparison, depreciation, profitability, inflation, sensitivity and break even analysis, Cost evaluation, categories of cost, method of developing cost estimates, how to price a product, life cycle costing, cost models Failure analysis, Causes of failures, Failure modes, Techniques for failure analysis, Nondestructive testing methods, Probabilistic approach to design, Reliability theory, Design for reliability, Communicating the design, recording of results and writing technical reports, visual aids and graphics.

REFERENCES
2. Design Engineering Harry Cather, Richard Morris, Mathew Philip, Chris Rose Elsevier Science and Technology books
4. Mechanical Engineering Design, Shigley

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
General Design of Tractors: Classification of tractors - Main components of tractor - Safety rules. Layout of wheeled tractor, hydraulic control system, power take off, tractor stability and ride characteristics Layout of crawler tractors, crawler details, methods of selection of equipments, selection of machines, basic rules for matching machines, selection of equipments including the nature of operating selection based on the type of soil, selection based on haul distance, selection based on weather conditions.

MODULE II

MODULE III
Control System of Tractors: Power transmission, steering system, brakes and braking system, wheels, rims and tyres and accessories of wheeled tractors, power transmission, steering clutch and braking system in crawler tractors. Agricultural Implements: Working attachment of tractors - Farm equipment - Classification - Auxiliary equipment - Trailers and body tipping mechanism.

References:
3. A. Guruvech and B. Sorekin- Tractors, MI1R Publishers Moscow, 1975
4. Geleman and M. Maskovin- Farm tractors, MIR. Publishers, Moscow, 1975

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.805.25 EMBEDDED SYSTEM IN AUTOMOBILES

L-T-D: 3-1-0
Credits: 4

MODULE - I
Architecture general 8 bit microprocessor and its architecture 8085, z-80 and mc 6800 mpu and its pin function - architecture - function of different sections.
Instruction set instruction format - addressing modes - instruction set of 8085 mpu-t-state - machine cycle and instruction cycles - timing diagrams - different machine cycles - fetch and execute operations - estimation of execution times.

MODULE - II
Assembly language programming construct of the language programming - assembly format of 8085 - assembly directive - multiple precision addition and subtraction - bcd to binary and binary to bcd, multiplication, division, code conversion using look up tables - stack and subroutines.
Data transfer schemes interrupt structure - programmed i/o - interrupt driven i/o, dma - serial i/o.

MODULE - III
Interfacing devices types of interfacing devices - input / output ports 8212, 8255, 8251, 8279.
octal latches and tristate buffers - a/d and d/a converters - switches, led's rom and ram interfacing.
Applications data acquisitions - temperature control - stepper motor control - automotive applications engine control, suspension system control, driver information systems), development of a high speed, high precision learning control system for the engine control.

References:
4. SAE Transactions, 1986 Sec 3.
5. Jabez Dhinagar.S., " Microprocessor Application in Automoblies ".

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE - I
Vehicle frame and suspension study of loads - moments and stresses on frame members. computer aided design of frame for passenger and commercial vehicle - computer aided design of leaf springs - coil springs and torsion bar springs. Clutch torque capacity of clutch. computer aided design of clutch components, design details of roller and sprag type of clutches.

MODULE - II
Front axle and steering systems analysis of loads - moments and stresses at different sections of front axle. determination of bearing loads at kingpin bearings. wheel spindle bearings. choice of bearings. determination of optimum dimensions and proportions for steering linkages ensuring minimum error in steering.

MODULE - III
Gear box computer aided design of three speed and four speed gear boxes. Drive line and read axle computer aided design of propeller shaft. design details of final drive gearing. design details of full floating, semi-floating and three quarter floating rear shafts and rear axle housings.

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
ELECTIVE V

08.806.1 PROPULSION ENGINEERING

L-T-D: 3-1-0 Credits: 4

Module- I

Module II

Module- III

References.
1. Rocket Propulsion elements- G. P. Sutton
2. Mechanics and Thermodynamics of propulsion- Hill and Peterson
3. Gas Turbines and Jet and Rocket Propulsion- Mathur and Sharma

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.806.2 INDUSTRIAL REFRIGERATION

L-T-D: 3-1-0 Credits: 4

Module I

Module II

Module III

References
1. Principles of Refrigeration – Dossat
2. ASHRAE Date Book- (3 Volumes)

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module 1

Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality cost-Variation in process- factors – process capability – process capability studies and simple problems – Theory of control chart- uses of control chart – Control chart for variables – X chart, R chart and σ chart. Control chart for attributes –control chart for proportion or fraction defectives – p chart and np chart – control chart for defects – C and U charts, State of control and process out of control identification in charts.

Module II

The concept of Acceptance sampling, Economics of inspections ,Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – The Operating characteristic curve– producer’s Risk and consumer’s Risk. AQL, LTPD, AOQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans. Minimum inspection per lot, Formulation of Inspection lots and selection of samples.

Module III

References;

2. L.S.Srinath, “Reliability Engineering”, Affiliated East west press

University Examination

Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
The process of technological innovation - factors contributing to successful technological innovation - the need for creativity and innovation - creativity and problem solving - brain storming - different techniques.

Module II
Collection of ideas and purpose of project - Selection criteria - screening ideas for new products (evaluation techniques).

Module III
Design of proto type - testing - quality standards - marketing research - introducing new products.
Creative design - Model Preparation - Testing - cost evaluation - Patent application

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE - I
Introduction to Materials management – Importance of material management and its role in industries. The need for the integrated approach in Material management

MODULE - II
Inventory control – Basic methods in Inventory – Assumptions used in deriving models. Inventory costs and EOQ model. Price breaks and quantities – Effects of variations in lead-time and demand. Effects of shortage cost on EOQ. Systems of Inventory control, Design of Inventory control systems.
Development of Computer Programme for forecasting.
Classification systems and selective Inventory control – ABC, VED, FSN, HML, and MUSIC, 3-D approaches, Coverage analysis in Material management.

MODULE - III
Introduction to JIT philosophy – Features and impact in Materials Management.
Material handling devices used in stores – Application of Computers in Material handling – Design of informatic systems for procurement and storage using computer.

REFERENCES
1. Scientific Inventory Management - Bnchan & Kbenigsberg
2. Inventory Management - Starr & Miller
4. Integrated Material management - P.Gopalakrishnan
5. Principles of Inventory management - Tershine

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Basic probability concepts - events and probability - elements of set theory - simple events and combination of events - Venn diagram - mutually exclusive events and collectively exhaustive events - De Morgan’s rule - basic axioms of probability - conditional probability - statistical independence - theorem of total probability - Bayes’ theorem - definition of a random variable - probability distribution and probability distribution and probability density of discrete and continuous random variables - main descriptors of a random variable (mean, mode, median, variance, standard deviation, coefficient of variation, skewness and kurtosis) - absolute moments and central moments - moment generating functions, characteristic functions and log characteristic functions. Useful probability distributions - normal distribution - standard normal distribution - lognormal distribution - binomial distribution - geometric distribution - negative binomial distribution - Poisson process and Poisson distribution - hypergeometric distribution - beta distribution - gamma distribution - extreme value distributions - joint and conditional probability distributions - covariance and correlation mean and variance - functions of single random variable - single function of multiple random variables - multiple functions of multiple random variables - moments of functions of random variables

Module II
Random processes - introduction - ensemble averages and correlation functions - time averages and correlation functions - weakly stationary and strongly stationary random processes - ergodic random processes - probability density and distribution functions - properties of autocorrelation functions - Fourier transforms - power spectral density functions - Wiener-Khintchine equations - properties of spectral density functions - spectral classification of random processes (narrow band, wide band, white noise) - level crossing - expected frequency and amplitude of narrow band Gaussian processes - Rayleigh distribution

Module III
Response to random excitations - introduction - impulse response and frequency response function as Fourier transform pair - response of a linear system function to stationary random excitation - response of a single degree of freedom system to random excitation - contour integration - joint probability distribution of two random variables - joint properties of stationary random processes - joint properties of ergodic random processes - cross-correlation functions for linear systems - response of multi-degree of freedom system to random excitations - response of one -dimensional continuous systems to random excitations

References:
University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Kinematics Pairs: Classifications of kinematics pairs – Number of points of support in a plane – Subdivision of higher pairs – Kinematics chains – Classification of Kinematics chains – Coupler curves: Definition and Equation – Roberts law – Cognate linkages – Cognate of the slider crank – Double points of a coupler curve – Coupler curve atlas.

MODULE II
The Euler – Savarg equation and its graphical representation – Determination of the Centre of Curvature of the path of a point – Euler savarg equation for points between the instantaneous centre and the inflexion point – General form of the Euler – Savarg equation – Relation between the position of a point in the movable plane and the centre of the curvature of its path – The inflection circle – Envelops and generation curves – Transformation of Euler – Savarg equation – Graphical construction – Construction of the inflexion centre if the centre of the curvature of both centrodes are known.

MODULE III
Kinematics chains of n-links: Number of lines of centres – Kinematics chains with constrained motion – Minimum number of hinges in one link in a closed chain with constrained motion – General analysis of Kinematics chains – Transformation of kinematics chain by the use of higher hinges – Replacement of turning pairs by sliding pairs – Criterion of constrained motion for Kinematic chain with higher pairs.
An Introduction to the Synthesis of mechanism: Two position of link – Three position of a link – The pole triangle and practical application.

REFERENCES
1. Kinematics of Mechanism - Rosenouver and Willis
2. Linkage Design - Jr. Hall

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction - finance and related disciplines scope of financial management - functions - objectives of financial management - an overview on Indian financial system
Financial analysis - financial statement analysis - ratio analysis

Module II
Statement of change in financial position - working capital basis only
Capital budgeting: nature - evaluation techniques - traditional technique - discounted cash flow techniques (NPV & IRR)

Module III
Working capital: nature - determinants - computation of working capital
Sources of corporate finance - capital market - stock exchanges - equity - debt - other financial instruments - foreign investments and financing sources - Euro currency market, Euro issues, GDR, ADR etc.

References:
2. Prasanna Chandra, "Financial Management", TMH
3. Shapiro A.C., "Modern Corporate Finance", Max well Macmillan

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction Computer technology - hardware - types of memory - input/output devices – software - mini/micro computers and programmable controllers - computer aided design - fundamentals of CAD - the design process - application of computers for design - manufacturing data base. Numerical control of machine tools- basic components of NC systems - NC coordinate systems - motion control system - application of numerical control - NC part programming - punched tape - tape coding and format - manual part programming - computer assisted part programming - APT language - NC programming with interactive graphics

Module II
Manufacturing systems - development of manufacturing system - components of FMS - FMS work station - Job coding and classification - group technology - benefits of FMS - tools and tooling - machining centres - head indexers - pallets - fixtures - work handling equipments - system storage - automated guided vehicles - industrial robots - programming of robots - assembly & inspection

Module III
Flexible manufacturing system management - FMS control software - manning of FMS - tool management - controlling precision - simulation and analysis of FMS - approaches to modelling for FMS - network simulation - simulation procedure - FMS design - economics of FMS - artificial intelligence

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction to CFD, Historical background, applications, advantages. Basic steps of CFD. Meshes, Structured and unstructured mesh, Classification of structured grids. Governing equations: continuity and momentum equations. Equation of transport of a scalar. Potential, Euler and Navier-Stokes equations. - Steady and unsteady flows. Typical boundary conditions such as Dirichlets and Neumann conditions. TDMA method., Numerical problem up to four unknowns using TDMA.

Module II

Module III

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.806.12 TECHNOLOGY FORECASTING

L-T-D: 3-1-0

Credits: 4

MODULE I
Introduction and Historical Background – Examples of notable successes and failures.
Dimensions of technological change: Intellectual, Philosophical and cultural factors – Political and international factors – Military and strategic posture – Macro economics – Micro economics – Communications and social feedback – Technological diffusion and innovation.

MODULE II
Forecasting techniques
Trend extrapolation: Curve fitting – Envelops, constraints and scales – intensive and extensive micro variables – The inertia of trend curves.
Heuristic forecasts: Extrapolation of dependant variables and constrained variables – analogies, metaphors and structural models – Phenomenological models – Operational models and simulations.

MODULE III
Introduction to technology assessment, TA and its relevance – History of TA in Government and Industry – Steps in TA – The MITRE Methodology – Brief review of techniques which can be used in TA including cross impact analysis, systems analysis, cost benefit analysis and formal models – Case studies – (Suggested projects: To be a TA project relevant to the Kerala context)

REFERENCES
1. Technology forecasting - Robe U Ayres, Mc Graw Hill
2. Selected readings on Technology assessment – IIT Bombay and Dept. of Science and Technology, New Delhi.

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Introduction to Information Systems - Challenges of Information Systems - Contemporary approach to Information systems - Computer based Information Systems - Types and examples of Information systems. OAS, TPS, MIS, DSS and ESS. Information technology Infrastructure- Hardware, Software, Database, People and Procedures - Data Communication network- Modems, Types of Communication Channels, Channel configurations, Channel sharing devices, Types of networks.
System concept: Organisation as a system- The strategic role of information in Organisational Management; Technical foundations of information systems

MODULE II

MODULE III
System Design, Structured system design, Input design and control, Output system design, File and data base design, System Development, System control, Documentation, Coding techniques- Detection of errors – verification and validating- System Implementation and control - testing – Software quality assurance- software metrics- Security.

REFERENCES
7. Information Systems for Modern management, Murdick and Ross

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Demand forecasting: basic models, Long and Short-term demand forecasting methods, Regression analysis and smoothing methods, Estimation of trend, cycle, and seasonality components, Analysis of forecast error and computer control of forecasting systems, multi item forecasting, slow-moving item forecasting. Basic inventory models: assumptions, performance measures, multi-item joint replacement model. Inventory systems under risk: service levels, safety stock, joint determination of Q and R, time-varying demands. Aggregate inventory management: Exchange curves, stock out situations, safety stock policies, distribution inventory systems.

Module II
Design of layout of factories, Office, Storage area etc. on consideration of facilities of working people, Storage facilities and general equipment for amenities of working people – Product, Process and combination layout – Systematic layout planning – Design of Assembly lines, Line balancing methods, Computer applications in layout designs. Routing problems: algorithms, Dispatching

Module III

References:
1. Production Planning and Inventory Control – Narasimhan et al., PHI
6. Inventory Management and Production Planning and Scheduling – Silver, Pyke & Peterson – John Willey & Sons

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Concept of a project-classification of projects- importance of project management- The project life cycle- establishing project priorities (scope-cost-time) project priority matrix- work break down structure.
Capital budgeting process- Planning- Analysis- Selection- Financing- Implementation- Review.
Generation and screening of project ideas- market and demand analysis- Demand forecasting techniques. Market planning and marketing research process- Technical analysis.

Module II
Basic techniques in capital budgeting-non discounting and discounting methods- pay back period- Accounting rate of return-net present value-Benefit cost ratio-internal rate of return.
Project risk.
Social cost benefit analysis and economic rate of return. Non-financial justification of projects.

Module III
Project administration- progress payments, expenditure planning, project scheduling and network planning, use of Critical Path Method (CPM), schedule of payments and physical progress, time-cost trade off.
Introduction to various Project management softwares.

References:
4. Project Management – Gopalakrishnan – Mcmillan India Ltd.
5. Project Management-Harry-Maylor-Peason Publication

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
08.806.16 DESIGN OF IC ENGINES

L-T-D: 3-1-0 Credits: 4

MODULE I
Review of Air standard cycle (brief description regarding the concepts)—Fuel air cycle and their analysis-dissociation, effects of operating variables like compression ratio, fuel-air ratio on thermal efficiency and power.
Actual cycle and their analysis-time loss factor, heat loss factor, exhaust blow down. Comparison of fuel air cycle and actual cycle.

MODULE II
Two stroke engines-introduction-advantages and disadvantages-Scavenging—various methods of scavenging and charge induction. -Terminologies like reference mass, delivery ratio, scavenge ratio, trapping efficiency, scavenging efficiency, and charging efficiency, relative cylinder charge. Scavenging models-perfect displacement and complete mixing model-scavenging efficiency-simple problems. Supercharging, Design of Intake and Exhaust port calculations (with the help of charts)
Study of transducers for IC engine application (only brief description about various types)

MODULE III
Design of IC engines-Basic decisions, Preliminary analysis, Cylinder number, size and arrangement - Detailed design procedure for piston, connecting rod, crank shaft, poppet valves, cylinder and cylinder head- Materials and manufacturing process of main components of engines.
Measurement aspects related to IC engines-speed measurement, torque measurement (only dynamometers), airflow measurement, exhaust gas measurement and treatment.

References:
1. IC Engine theory and practise – C.F Taylor, Vol.1 and Vol.2
2. IC Engines - Lickty
3. IC Engines – Heywood
4. IC Engine design – Richard James
5. Scavenging of 2 stroke engines – Schweitzer
6. Fundamentals of IC Engines- V.Ganesan
7. IC Engines – Shyam K Agarwal

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III
Robot kinematics and robot programming: Forward Kinematics, Inverse Kinematics and Differences; Forward Kinematics and Reverse Kinematics of Manipulators with Two Degrees of Freedom (In 2 Dimensional) – Deviations and Problems. Teach Pendant Programming, Lead through programming, Robot programming Languages – VAL Programming – Motion Commands, Sensor Commands, End effector commands, and Simple programs

Industrial Applications: Application of robots in machining, welding, assembly, and material handling.

References
7 Industrial Robots, Yu.Kozyrev

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II

Module III

REFERENCES:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Tribology: Introduction to tribology, Wear: Types of wear - adhesive, abrasive, oxidative, corrosive, erosive and fretting wear, roles of friction and lubrication and wear testing.

Module II
Hardfacing processes: SMAW, GTAW, GMAW, FCAW, SAW, PAW, Oxy-Acetylene Welding, Furnace fusing, Thermal -spray, flame spray processes - HVOF, Detonation gun and jet kote processes, hard facing consumables.

Module III
High energy modification and special processes: Electron beam hardening/ glazing, Laser beam hardening / glazing ion implantation, Composite surface created by laser and Electron beam. Surface cements, Wear tiles, Electro spark deposition, fused carbide cloth, thermal / chemical, Ceramic coatings, centrifugal cast wear coatings, Wear sleeves and Wear plates.

REFERENCES:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I
Introduction to Group Technology (GT), Limitations of traditional manufacturing systems, characteristics and design of groups, benefits of GT and issues in GT.
Cellular Manufacturing System (CMS) planning and design: Problems in GT/CMS.

Module II
Implementation of GT/CMS: Inter and Intra cell layout, cost and non-cost based models, establishing a team approach, Managerial structure and groups, batch sequencing and sizing, life cycle issues in GT/CMS.

Module III
Performance measurement and control: Measuring CMS performance - Parametric analysis - PBC in GT/CMS, cell loading, GT and MRP - framework.
Economics of GT/CMS: Conventional Vs group use of computer models in GT/CMS, Human aspects of GT/CMS - cases.

REFERENCES

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module I

Module II
Cooling and heating load calculation - selection of design temperatures - sources of heat load- heat transfer through structures - solar radiation - Infiltration and ventilation- Heat generation inside the conditioned space - heat storage, Diversity and stratification. Design of air conditioning system. Continuity equation, Bernoulli’s equation, pressure losses, Duct design - pressure drop in ducts, pressure drop by graphical method- method of duct design- Arrangements of ducts, fan – design, thermal insulation

Module III
Heating systems-warm air systems-hot water systems steam heating systems-panel and central heating systems-heat pump circuit. Applications- comfort air conditioning-effective temperature-thermal analysis of human body- Air conditioning systems- evaporate cooling- low humidity applications Automobile and Train car air conditioning.

References:
1. C. P. Arora, Refrigeration and Air Conditioning.
3. W. P. Jones, Air-conditioning Engineering
4. Carriers Handbook system design of Air Conditioning

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE-I

MODULE-II
Shape optimization of cars front end modification - front and rear wind shield angle - boat tailing - hatch back, fast back and square back - dust flow patterns at the rear - effects of gap configuration - effect of fasteners.
Wind tunnels for automotive aerodynamic introduction - principle of wind tunnel technology - limitation of simulation - stress with scale models - full scale wind tunnels - measurement techniques - equipment and transducers - road testing methods - numerical

MODULE-III
Vehicle handling the origin of forces and moments on a vehicle - side wind problems - methods to calculate forces and moments - vehicle dynamics under side winds - the effects of forces and moments - characteristics of forces and moments - dirt accumulation on the vehicle - wind noise - drag reduction in commercial vehicles.

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
MODULE I
Introduction: Power plants, chassis and transmission, Multiaxle vehicles. Heavy duty petrol engines and high speed diesel engines, air cooled and water cooled engines and air filters as in off highway vehicles. Performance characteristics of vehicles, resistance to digging and motion, tractive effort, power required, number of speeds and gear ratios desirable, double reduction arrangements. (Only theory with out any numerical problems)
Land Clearing Machines: Construction and working of Bush cutter, stampers, Tree dozer, Rippers.

MODULE II

MODULE III
Shovels and Ditchers: Power shovel, revolving and stripper shovels - drag lines - ditchers - Capacity of shovels. Construction & Industrial Equipments: Construction and operational aspects of mobile cranes, road rollers, elevators / Man lifters, Fork Lifters

References:
1. K. Abrosimov, A. Bromberg and F. Kaloyer- Road making machinery, MIR Publishers, Moscow
2. Herbert Nicholos- Moving the earth
3. Jagman Singh- On and with the earth

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)
Module-I
Introduction - heat of reaction - measurement of urp - measurement of hrp - adiabatic flame temperature: complete combustion in c/h/o/n systems, constant volume adiabatic combustion, constant pressure adiabatic combustion, calculation of adiabatic flame temperature - isentropic changes of state. Diesel engine simulation multi zone model for combustion, different heat transfer models, equilibrium calculations, simulation of engine performance, simulation for pollution estimation.

Module-II
SI engine simulation with air as working medium deviation between actual and ideal cycle problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vaporization, full throttle operation - efficiency calculation, part-throttle operation, super charged operation.

Module-III
Progressive combustion SI engines simulation with progressive combustion with gas exchange process, heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance. SI engine simulation

References:

University Examination
Question Paper consists of two parts. Part A-10 compulsory short answer questions for 4 marks each, covering the entire syllabus (10 x 4=40). Part B-2 questions of 20 marks each, from each module and student has to answer one from each module (3 x 20=60)