follow	ving.	
i) Lon	ngitudinal elastic modulus	
ii) Ratio	io of load taken by fibre to that of the composit	te.
iii) Tran	nsverse Young's Modulus.	
iv) Maj	jor and Minor Poisson's ratio.	
v) In p	blane shear modulus.	
Given:	Young's Modulus of Fibre = 85 GPa	
	Young's Modulus of Matrix = 3.4 GPa	
	Poisson's Ratio of Fibre = 0.2	
	Poisson's Ratio of Matrix $= 0.3$	(07)
3. Derive th	he expression for Longitudinal Young's Mod	ulus (E ₁), Transverse Young's
Modulus	(E_2) , Major Poisson's Ratio and in-plane She	ear Modulus (G ₁₂) using micro
mechanic	es approach in terms of properties of matrix	x and fibre. Comment on the
dependen	nce of these properties on fibre and matrix.	
		k and fibre. Comment on the

b) How are composites classified? Explain each category with 2 examples. (06)

b) A uni directional glass/epoxy lamina has 70% Fibre volume fraction. Find the

Module - I

1. a) What is a composite material? What are the properties that can be improved by

Answer *any two* questions from each Module

Time: 3 Hours Max. Marks: 60

Reg. No:

Name :....

forming a composite material?

2. a) What are Volume and Mass fractions?

Instructions:

(Pages 2)

(10)

P.T.O

(03)

(04)

MDE 2006: MECHANICS OF COMPOSITE MATERIALS

Model Question Paper

Second Semester M.Tech Degree Examination, October 2014

(2013 Scheme)

Branch: Mechanical, Stream: Machine Design

Module - II

- 4. a) Write down the Stiffness Matrix and Compliance Matrix for the following composite lamina.
 i) Aniosotropic Material ii) Monoclinic Material iii) Orthotropic Material
 iv) Transversly Isotropic Material (04)
 - b) For a 60° angle lamina of Graphite/Epoxy, find the following. i) Transformed Compliance Matrix ii) Transformed Reduced Stiffness Matrix iii) Global Strains iv) Local Strains v) Local Stress Given : $\sigma_1 = 2MPa$, $\sigma_2 = -3MPa$, $\tau_{12} = 4$ MPa, $E_1 = 181GPa$, $E_2 = 10.3GPa$, $G_{12} = 7.17GPa$, $\gamma_{12} = 0.28$. (06)

5) Find maximum value of S > 0, if a stress of $\sigma_x = 2S$, $\sigma_y = -3S$ and $\tau_{xy} = 4S$ is applied to a 60° angle lamina of Graphite/Epoxy using the following theories of failure. i) Maximum Stress Failure Theory

- b) Maximum Strain Failure Theory
- c) Tsai Hill Failure Theory
- d) Tsai Wu Failure Theory
- Given $(\sigma_1^{T})_{ult} = 1500$ MPa, $(\sigma_1^{C})_{ult} = 1500$ MPa, $(\sigma_2^{T})_{ult} = 40$ MPa, $(\sigma_2^{C})_{ult} = 246$ MPa, $(\tau_{12})_{ult} = 68$ MPa (10)
- 6) Find the 3 stiffness matrices [A], [B] and [D] for a 3 ply [0/35/-45] Graphite/Epoxy laminate. Assume each laminate has a thickness of 5mm. (10)

<u>Module – III</u>

7) Explain different machining techniques of composite materials.	(10)
8) Explain different testing process of composite materials.	(10)

9) Write a note on Impact Resistance, Fracture Resistance and Fatigue Resistance of a composite material. (10)