UNIVERSITY OF KERALA
Model Question Paper
First Degree Programme
Semester VI Core Course
MM: 1642 Linear Algebra

Time: 3 Hours
Maximum Marks: 80

Section I

All the first 10 questions are compulsory. Each carries 1 mark.

1. Write an equation of the line through the vector $\binom{1}{4}$ parallel to the vector $\binom{2}{2}$.
2. Find an angle between the vectors $\binom{2}{2}$. and $\binom{0}{3}$.
3. Find the projection of the vector $\binom{3}{1}$ to the line along $\binom{1}{2}$.
4. Let A and B be two linear transformations. If B is a reflection in the $X-$ axis and A is a reflection in the Y - axis. Then what is $A B$?
5. True / False : If vector A is a scalar multiple of vector B, then B is a scalar multiple of A.
6. True / False : The square of a symmetric matrix is symmetric.
7. Define an eigenvalue of a linear transformation.
8. Define an isometry transformation.
9. What kind of locus is defined by the equation $x^{2}+y^{2}-z^{2}=0$.
10. Define a regular simplex.

Section II

Answer any 8 questions from this section.
Each question carries 2 marks
11. Let T be the transformation with matrix $\left(\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right)$. Find the matrix T^{-1}.
12. Let E be a linear transformation such that $E^{2}=E$. What are the eigenvalues of E ?
13. Prove: If T_{1} and T_{2} are two length preserving transformations then so is $T_{1} T_{2}$.
14. Prove : If \bar{A} and \bar{B} are linearly independent vectors, then $\bar{A} \times \bar{B}=\overline{0}$
15. In terms of co-ordinates of $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$, calculate the images of R_{π}^{1} and $R_{\frac{\pi}{4}}^{1}$
16. Let T be a transformation of \mathbb{R}^{3}, such that $T(X)=0$ implies $X=0$. Prove that T has an inverse.
17. Classify the curve $2 x y-y^{2}=1$.
18. Prove that $\left(e_{3}^{s} 2\right)^{-1}=e_{3}^{-x}$.
19. Find the characteristic equation for the transformation with matrix $\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c\end{array}\right)$.
20. Prove : the only eigenvalues of an isometry of \mathbb{R}^{3} are 1 or -1 .
21. Let a 3×3 matrix m be the matrix of an isometry, show that m is an orthogonal matrix.
22. Show that the vectors $\left(\begin{array}{l}x \\ y \\ u \\ v\end{array}\right),\left(\begin{array}{c}u \\ -v \\ -x \\ y^{〔}\end{array}\right),\left(\begin{array}{c}v \\ u \\ -y \\ -x\end{array}\right)$ are mutually orthogonal.

Section III

Answer any 6 questions from this section.

 Each question carries 4 marks.23. Let A be a linear transformation and L be a straight line. Then prove that the image of L under A is either a straight line or a single point.
24. (a) Prove: If T_{1} and T_{2} are two reflections, then $T_{1} T_{2}$ is reflection.
(b) Prove : If T_{1} is a rotation and T_{2} is a reflection, then $T_{1} T_{2}$ is reflection.
25. Show that the transformation T with matrix $\left(\begin{array}{ccc}a & b & c \\ 2 a & 2 b & 2 c \\ 3 a & 3 b & 3 c\end{array}\right)$ has no inverse for any values of a, b, c.
26. Let S, T be two linear transformations. Prove that if the product $S T$ has an inverse, then both S and T has inverse.
27. Find all solutions of the non homogeneous system $x_{1}+x_{2}+x_{3}=1,2 x_{1}-x_{2}=5$ and $5 x_{1}+2 x_{2}+3 x_{3}=8$.
28. Prove that if T is an isometry of \mathbb{R}^{3}, then $\operatorname{det}(T)= \pm 1$.
29. Classify the quadratic surface $x^{2}+10 x z+y^{2}+6 y z+z^{2}=1$.
30. Find a nonzero vector $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ in \mathbb{R}^{3} which is orthogonal to each of the vectors $\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
31. Find the coefficients a, b, c of a parabola $y=a x^{2}+b x+c$ which passes through the points $(1,6),(2,4),(3,0)$.

Section IV

Answer any 2 questions from this section.
 Each question carries 15 marks.

32. Prove that a real number t is an eigenvalue of the linear transformation A if and only if t is a root of the characteristic equation of A.
Find all eigenvalues and eigenvectors of the matrix $\left(\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right)$.
33. (a) Let A be a linear transformation with linearly independent eigenvectors $\binom{x_{1}}{y_{1}}$ and $\binom{x_{2}}{y_{2}}$, corresponding to the eigenvalues t_{1} and t_{2}. Then $A=P D P^{-1}$ where $m(P)=$ $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$ and $m(D)=\left(\begin{array}{cc}t_{1} & 0 \\ 0 & t_{2}\end{array}\right)$.
(b) Calculate $\left(\begin{array}{ll}3 & 0 \\ 4 & 2\end{array}\right)^{6}$.
34. (a) Prove that a linear transformation A on \mathbb{R}^{3} preserves orientation if and only if $\operatorname{det}(m(A))>0$.
(b) Let T be an orientation-preserving linear transformation of \mathbb{R}^{3}. Prove that if Π is any parallelepiped, then volume $(T(\Pi))=(\operatorname{det}(m(T)))(\operatorname{volume}(\Pi))$.
35. State and prove spectral theorem in \mathbb{R}^{3}.
