MSc Degree Examination Branch II Physics PH 212 – Mathematical Physics

Duration: 3 hours

Maximum marks 75

Part A

Answer any five questions. Each question carries 3 marks

- 1 Determine the scale factors in cylindrical polar coordinates.
- 2 Explain the fourier series representation of an even function.
- 3 Define Green's function. Where is it used and how?.
- 4 What is Chebechev's inequality and its importance.
- 5 Define covariant and contravariant tensors and explain their physical meanings.
- 6 Define 'classes' and 'invariant subgroups' of a group
- 7 What is meant by an exact differential equation
- 8 Write down equation of geodesic

9

5x3=15 marks

Part B

Answer three questions. Each question carries 15 marks

,		
(a)	What are orthogonal curvilinear coordinates?	5
(b)	Obtain expressions for gradient, divergence and curl in spherical polar coordinates.	10
	OR	
10		
(a)	Deduce CR conditions for a function to be analytic.	5
(b)	Stae and prove Cauchy Integral formula.	10
		15 marks
11		
(a)	Explain Laplace transform	5
(b)	Solve wave equation using Laplace transform	10
	OR	
12		
(a)	Discuss the occurrence of Hermite differential equation in physics.	5
(b)	Derive its solution using power series method	10
		15 marks
13		
(a)	Explain the construction of covariant derivative of a vector field.	5
(b)	Deduce the transformation law of Christoffel symbols.	10
	OR	
14		
(a)	Distinguish between reducible and irreducible representation of groups.	5

(b) Explain the construction of the irreducible representations of SU(2) group

15 marks

Part C

Answer any three questions. Each question carries 5 marks

- 16 Determine the eigen values and eigen vectors of the matrix
- 17 Find the fourier transform of f(x)=1 for 1x1 < a = 0 for 1x1 > a
- 18 Determine the poles and residues at each pole of the function
- 19 Obtain the solution to the partial differential equation by separation of variables.
- 20 If A^{ij} are the components of II rank contravariant tensor and B_k that of a covariant vector, show that $A^{ij}B_k$ is a third rank mixed tensor.
- 21 Using power series method, solve

3x5=15 marks