MSc Degree Examination
 Branch II Physics
 PH 212 - Mathematical Physics

Duration: 3 hours

Part A

Answer any five questions. Each question carries $\mathbf{3}$ marks

1 Determine the scale factors in cylindrical polar coordinates.
2 Explain the fourier series representation of an even function.
3 Define Green's function. Where is it used and how?.
4 What is Chebechev's inequality and its importance.
5 Define covariant and contravariant tensors and explain their physical meanings.
6 Define 'classes' and 'invariant subgroups' of a group
7 What is meant by an exact differential equation
8 Write down equation of geodesic

Part B

Answer three questions. Each question carries $\mathbf{1 5}$ marks

(a) What are orthogonal curvilinear coordinates? 5
(b) Obtain expressions for gradient, divergence and curl in spherical polar coordinates.

OR
10
(a) Deduce CR conditions for a function to be analytic. 5
(b) Stae and prove Cauchy Integral formula. 10

11
(a) Explain Laplace transform 5
(b) Solve wave equation using Laplace transform 10

OR
12
(a) Discuss the occurrence of Hermite differential equation in physics. 5
(b) Derive its solution using power series method 10

13
(a) Explain the construction of covariant derivative of a vector field. 5
(b) Deduce the transformation law of Christoffel symbols. 10

OR
14
(a) Distinguish between reducible and irreducible representation of groups.
(b) Explain the construction of the irreducible representations of $\mathrm{SU}(2)$ group 10

Part C

Answer any three questions. Each question carries 5 marks

16 Determine the eigen values and eigen vectors of the matrix

17 Find the fourier transform of $f(x)=1$ for $1 \times 1<a$
$=0$ for $1 \mathrm{x} 1>\mathrm{a}$
18 Determine the poles and residues at each pole of the function
19 Obtain the solution to the partial differential equation by separation of variables.
20 If A^{j} are the components of II rank contravariant tensor and B_{k} that of a covariant vector, show that $\mathrm{A}^{i j} \mathrm{~B}_{\mathrm{k}}$ is a third rank mixed tensor.
21 Using power series method, solve

