Time: 3 hours

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Is the limit of a convergent sequence in a metric space unique? Justify your answer.
- 2. Let R be the subset of \mathbb{R}^n consisting of all points having only rational co-ordinates. Prove that $\bar{R} = \mathbb{R}^n$
- 3. Define isometric spaces. Give an example
- 4. Is the limit of a convergent sequence in a topological space unique? Justify your answer.
- 5. For $X = \{a, b\}$ with trivial topology and $A = \{a\}$, find int A, bdy A and A'
- 6. For a connected space X and a continuous onto function $f: X \to Y$, prove that Y is connected.
- 7. Give example of two disconnected sets whose union is connected.
- 8. Show that every compact space has the Bolzano-Weierstrass property . $5 \times 3 = 15$

Part B Answer all questions from 9 to 13 Each question carries 12 marks

- 9. A. a. Define the Max Metric on \mathbb{R}^n . Show that it is a metric on \mathbb{R}^n
 - b. Let (X, d) be a metric space and A subset of X. Prove that, a point $x \in X$ is a limit point of A if and only if there is a sequence of distinct points of A which converges to x.
 - c. Prove that singleton sets are open in a discrete metric space.

OR

- B. a. Prove that a finite subset of a metric space has no limit points.
 - b. For a subset A of a metric space X, show that \overline{A} is a closed set and is a subset of every closed set containing A.
 - c. Give example of two subsets A and B of a metric space X with $A \subset B$ but $bdy \; A \not \subset bdy \; B$
- 10. A. a. For a function $f : X \to Y$, where X and Y are metric spaces, prove that f is continuous if and only if for each open set O in Y, $f^{-1}(O)$ is open in X
 - b. State and prove Baire Category Theorem

OR

- B. Show that every metric space (X, d) has a unique completion
- 11. A. a. Let X be a topological space, $A \subset X$ and x a limit point of A. Will there always be a sequence of distinct points in A that converges to x? Justify your answer.
 - b. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ for any subsets A, B of a space X
 - c. For a subset A of a topological space X, prove that A is open if and only if $bdy \ A \subset (X \setminus A)$

OR

- B. a. Prove that a separable metric space is second countable.
 - b. Prove that the property of being a Hausdorff space is both a topological property and hereditary property.
- 12. A. a. Prove that a topological space X is disconnected if and only if there is a continuous function from X onto a discrete two point space.
 - b. Show that the connected subsets of \mathbb{R} are precisely the intervals

OR

- B. a. Prove that every closed and bounded interval has the fixed-point property
 - b. Prove that every open, connected subset of \mathbb{R}^n is path connected
- 13. A. a. State and prove Cantor's theorem of Deduction. Show that the requirement that the subsets E_n are bounded is necessary.
 - b. Show that a continuous function from a compact metric space to an arbitrary metric space is uniformly continuous

OR

- B. a. State and prove the Lindelof theorem
 - b. Show that, every open cover of a compact metric space X has a Lebesgue number
 - c. For the one point compactification $(X_{\infty}, \mathcal{T}_{\infty})$ of (X, \mathcal{T}) , show that if X_{∞} is Hausdorff, then X is both Hausdorff and locally compact

 $5 \times 12 = 60$