Time: 3 hours

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Let X_1 be a closed subspace and X_2 be a finite dimensional subspace of a normed space X. Prove that $X_1 + X_2$ is closed in X.
- 2. Prove that every linear map defined on a finite dimensional space is continuous.
- 3. Check whether l^p has a denumerable basis. Find a Schauder basis for l^p .
- 4. Let X be a normed linear space and a be a nonzero element of X. Prove that $||a|| = \sup\{|f(a)| : f \in X', ||f|| \le 1\}$
- 5. Define a closed linear map. Whether every closed linear maps are continuous? Justify the answer.
- 6. Let X be a Banach space over K and $A \in BL(X)$. Prove that the spectrum of A, $\sigma(A)$ is a compact subset of K.
- 7. Let X be a finite dimensional space. Prove that $x_n \xrightarrow{w} x$ if and only if $x_n \to x$.
- 8. Does there exist a compact linear map $F: l^{\infty} \to l^{\infty}$ which is onto. $5 \times 3 = 15$

Part B Anwer all questions from 9 to 13 Each question carries 12 marks

- 9. A. Let X be a normed linear space. Prove that every closed and bounded subset of X is compact if and only if X is finite dimensional. 4 marks
 - B. Let X and Y be normed linear spaces and $F : X \to Y$ be linear. Show that F is continuous if and only if $||F(x)|| \le \alpha ||x|| \quad \forall x \in X$ and for some $\alpha > 0$. 5 marks
 - C. If X is an infinite dimensional normed space, then prove that it contains a hyperspace which is not closed. 3 marks

OR

- A. State and prove Riesz Lemma.
- B. Let X and Y be normed spaces and $F: X \to Y$ be linear and range of F be closed. Show that F is continuous if and only if the zero space Z(F) is closed in X. 5 marks
- C. Let $f: X \to c$ defined by $f(x) = \lim_{j \to \infty} x(j)$, $x \in c$. Prove that f is continuous and ||f|| = 1. 3 marks

4 marks

- 10. A. Let X be a normed space over K, Y be a subspace of X and $g \in Y'$. Prove that there exist $f \in X'$ such that $f|_Y = g$ and ||f|| = ||g||. Let $X = K^2$ with norm $||.||_{\infty}$ and $Y = \{(x_1, x_2) : x_2 = 0\}$. Define $g \in Y'$ by g(x(1), x(2)) = x(1). Find a Hahn Banach extension to q. 8 marks
 - B. Let a = (1, 1, 1, ...). Prove that $\{a, e_1, e_2, ...\}$ forms a Schauder basis for the subspace $c \text{ of } l^{\infty}.$ 4 marks

OR

- A. Let X be a normed linear space. Prove that for every subspace Y of X and every $g \in Y'$ there exists a unique Hahn Banach extension of g to X if and only if X' is strictly convex. 6 marks
- B. Let X and Y be normed spaces and $X \neq \{0\}$. Prove that BL(X, Y) is a Banach space if and only if Y is Banach. Prove that X' is Banach. 6 marks

11. A. State and prove Uniform Boundedness Principle. 6 marks

- B. Let X and Y be normed spaces and $F \in BL(X,Y)$. If F is open, prove that F is 3 marks onto.
- C. Let X be a Banach space and $P: X \to X$ be a projection. If range of P and zero space of P are closed then prove that P is continuous. 3 marks

OR

- A. Let X be a normed space and E be a subset of X. Prove that E is bounded in X if and only if f(E) is bounded in K for every $f \in X'$. 6 marks
- B. State and prove Open Mapping theorem. 6 marks
- 12. A. Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A).$ 6 marks
 - B. Let X and Y be Banach spaces and $F \in BL(X, Y)$ be one-one. If range of F, R(F)is closed in Y, prove that $F^{-1}: R(F) \to X$ is bounded. 3 marks
 - C. If $A \in BL(X)$ is invertible, prove that $\sigma(A^{-1}) = \{k^{-1} : k \in \sigma(A)\}$. 3 marks

OR

- A. Let $A: l^p \to l^p$ defined by $A(x) = (0, x(1), x(2), \ldots); x \in l^p$. Find the spectrum, eigen spectrum and approximate eigenspectrum of A. 6 marks
- B. Let X be a nonzero Banach space over C and $A \in BL(X)$. Prove that spectrum of A is nonempty. Obtain the spectral radius formula. 6 marks
- 13. A. Let X be a reflexive normed space. Prove that X' is reflexive. 4 marks
 - B. Let $F \in BL(X, Y), G \in BL(Y, Z)$ and one of them be compact. Prove that $GF \in CL(X, Z).$ 4 marks
 - C. Let X be a Banach space and $P \in BL(X)$ be a projection. Prove that $P \in CL(X)$ if and only if P is of finite rank. 4 marks

- A. Let X be a normed linear space and Y be a Banach space. Prove that CL(X, Y) is a closed two sided ideal of BL(X, Y). 6 marks
- B. Prove that $x_n \xrightarrow{w} x$ if and only if $x_n \to x$ in l^1 . 6 marks

•

 $5 \times 12 = 60$