KERALA UNIVERSITY

Model Question Paper- M. Sc. Examination
Branch: Mathematics
MM232 - FUNCTIONAL ANALYSIS - I

Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Let X_{1} be a closed subspace and X_{2} be a finite dimensional subspace of a normed space X. Prove that $X_{1}+X_{2}$ is closed in X.
2. Prove that every linear map defined on a finite dimensional space is continuous.
3. Check whether l^{p} has a denumerable basis. Find a Schauder basis for l^{p}.
4. Let X be a normed linear space and a be a nonzero element of X. Prove that $\|a\|=\sup \left\{|f(a)|: f \in X^{\prime},\|f\| \leq 1\right\}$
5. Define a closed linear map. Whether every closed linear maps are continuous? Justify the answer.
6. Let X be a Banach space over K and $A \in B L(X)$. Prove that the spectrum of $A, \sigma(A)$ is a compact subset of K.
7. Let X be a finite dimensional space. Prove that $x_{n} \xrightarrow{w} x$ if and only if $x_{n} \rightarrow x$.
8. Does there exist a compact linear map $F: l^{\infty} \rightarrow l^{\infty}$ which is onto. $5 \times 3=15$

Part B

Anwer all questions from 9 to 13
Each question carries 12 marks
9. A. Let X be a normed linear space. Prove that every closed and bounded subset of X is compact if and only if X is finite dimensional.

4 marks
B. Let X and Y be normed linear spaces and $F: X \rightarrow Y$ be linear. Show that F is continuous if and only if $\|F(x)\| \leq \alpha\|x\| \forall x \in X$ and for some $\alpha>0$. 5 marks
C. If X is an infinite dimensional normed space, then prove that it contains a hyperspace which is not closed.

3 marks

OR

A. State and prove Riesz Lemma.

4 marks
B. Let X and Y be normed spaces and $F: X \rightarrow Y$ be linear and range of F be closed. Show that F is continuous if and only if the zero space $Z(F)$ is closed in $X .5$ marks
C. Let $f: X \rightarrow c$ defined by $f(x)=\lim _{j \rightarrow \infty} x(j), x \in c$. Prove that f is continuous and $\|f\|=1$.
10. A. Let X be a normed space over K, Y be a subspace of X and $g \in Y^{\prime}$. Prove that there exist $f \in X^{\prime}$ such that $\left.f\right|_{Y}=g$ and $\|f\|=\|g\|$. Let $X=K^{2}$ with norm $\|\cdot\|_{\infty}$ and $Y=\left\{\left(x_{1}, x_{2}\right): x_{2}=0\right\}$. Define $g \in Y^{\prime}$ by $g(x(1), x(2))=x(1)$. Find a Hahn Banach extension to g.
B. Let $a=(1,1,1, \ldots)$. Prove that $\left\{a, e_{1}, e_{2}, \ldots\right\}$ forms a Schauder basis for the subspace c of l^{∞}. 4 marks

OR

A. Let X be a normed linear space. Prove that for every subspace Y of X and every $g \in Y^{\prime}$ there exists a unique Hahn Banach extension of g to X if and only if X^{\prime} is strictly convex.
B. Let X and Y be normed spaces and $X \neq\{0\}$. Prove that $B L(X, Y)$ is a Banach space if and only if Y is Banach. Prove that X^{\prime} is Banach.

6 marks
11. A. State and prove Uniform Boundedness Principle. 6 marks
B. Let X and Y be normed spaces and $F \in B L(X, Y)$. If F is open, prove that F is onto. 3 marks
C. Let X be a Banach space and $P: X \rightarrow X$ be a projection. If range of P and zero space of P are closed then prove that P is continuous. 3 marks

OR

A. Let X be a normed space and E be a subset of X. Prove that E is bounded in X if and only if $f(E)$ is bounded in K for every $f \in X^{\prime}$. 6 marks
B. State and prove Open Mapping theorem. 6 marks
12. A. Let X be a normed space and $A \in B L(X)$ be of finite rank. Prove that $\sigma_{e}(A)=\sigma_{a}(A)=\sigma(A)$. 6 marks
B. Let X and Y be Banach spaces and $F \in B L(X, Y)$ be one-one. If range of $F, R(F)$ is closed in Y, prove that $F^{-1}: R(F) \rightarrow X$ is bounded. 3 marks
C. If $A \in B L(X)$ is invertible, prove that $\sigma\left(A^{-1}\right)=\left\{k^{-1}: k \in \sigma(A)\right\}$. 3 marks

OR

A. Let $A: l^{p} \rightarrow l^{p}$ defined by $A(x)=(0, x(1), x(2), \ldots) ; x \in l^{p}$. Find the spectrum, eigen spectrum and approximate eigenspectrum of A. 6 marks
B. Let X be a nonzero Banach space over C and $A \in B L(X)$. Prove that spectrum of A is nonempty. Obtain the spectral radius formula. 6 marks
13. A. Let X be a reflexive normed space. Prove that X^{\prime} is reflexive. 4 marks
B. Let $F \in B L(X, Y), G \in B L(Y, Z)$ and one of them be compact. Prove that $G F \in C L(X, Z)$.
C. Let X be a Banach space and $P \in B L(X)$ be a projection. Prove that $P \in C L(X)$ if and only if P is of finite rank.

OR

A. Let X be a normed linear space and Y be a Banach space. Prove that $C L(X, Y)$ is a closed two sided ideal of $B L(X, Y)$.

6 marks
B. Prove that $x_{n} \xrightarrow{w} x$ if and only if $x_{n} \rightarrow x$ in l^{1}. 6 marks

$$
5 \times 12=60
$$

