UNIVERSITY OF KERALA

Model Question Paper- M. Sc. Examination 2021 admission onwards
Branch: Mathematics
Course Code-MM 243 Course Name-Difference Equations
Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Prove that Δ^{-1} is linear.
2. Consider the difference equation $y(n+3)-\frac{n}{n+1} y(n+2)+n y(n+1)-3 y(n)=n$, where $y(1)=0, y(2)=-1$ and $y(3)=1$. Find $y(6)$.
3. For each $x_{0} \in \mathbb{R}^{k}$ and $n_{0} \in \mathbb{Z}+$ there exists a unique solution $x\left(n, n_{0}, x_{0}\right)$ of $x(n+1)=$ $A(n) x(n)$ with $x\left(n_{0}, n_{0}, x_{0}\right)=x_{0}$.
4. State and prove Abel's formula.
5. Find the Z-transform of the sequence $\{\sin (\omega n)\}$.
6. Write a short note on self-adjoint second order difference equations.
7. Show that $\left(\frac{n}{t^{2}+n^{2}}\right)^{n}=O\left(\frac{1}{t^{n}}\right), n \rightarrow \infty$, for $n \in \mathbb{Z}^{+}$.
8. Define ordinary dichotomy.

Part B
 Answer all questions from 9 to 13
 Each question carries 12 marks

9. .
A. . State and prove Abel's lemma.

OR

B. Solve the difference equations
a). $(E-3)(E+2) y(n)=5\left(3^{n}\right)$.
b). $y(n+2)+4 y(n)=8\left(2^{n}\right) \cos \left(\frac{n \pi}{2}\right)$
10.
A. . Find the general solution of $x(n+1)=A x(n)$, where $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$.

OR

B. For every fundamental matrix $\Phi(n)$ of system $x(n+1)=A(n) x(n)$, there exists a nonsingular periodic matrix $P(n)$ of period N such that $\Phi(n)=P(n) B^{n}$.
11. .
A. Write a note on the properties of Z-transform.

OR

B. Solve the difference equation $x(n+4)+9 x(n+3)+30 x(n+2)+44 x(n+1)+24 x(n)=0$, $x(0)=0, x(1)=0, x(2)=1, x(3)=10$.
12. .
A. . State and prove Sturm separation theorem.

OR

B. If $b(n) b(n+1) \leq(4-\epsilon) p^{2}(n)$ for some $\epsilon>0$ and for all $n \geq N$, then every solution of $p(n) x(n+1)+p(n-1) x(n-1)=b(n) x(n)$ is oscillatory.
13. .
A. . Suppose that system $x(n+1)=D(n) x(n)$ possesses an ordinary dichotomy and the following condition holds: $\sum_{n=n_{0}}^{\infty}\|B(n)\|<\infty$. Then for each bounded solution $x(n)$ of $x(n+1)=D(n) x(n)$ there corresponds a bounded solution $y(n)$ of $y(n+$ $1)=(D(n)+B(n)) y(n)$ given by $y(n)=x(n)+\sum_{j=n_{0}}^{n-1} \Phi_{1}(n) \Phi^{-1}(j+1) B(j) y(j)-$ $\sum_{j=n}^{\infty} \Phi_{2}(n) \Phi^{-1}(j+1) B(j) y(j)$. The converse also holds; for each bounded solution $y(n)$ of $y(n+1)=(D(n)+B(n)) y(n)$ there corresponds a bounded solution $x(n)$ of $x(n+1)=D(n) x(n)$.

OR

B. Suppose that $\lim _{n \rightarrow \infty} \frac{x(n+1)}{x(n)}=\lambda$.
(a) If $\lambda \neq 0$, then $x(n)= \pm \lambda^{n} e^{n \nu(n)}$ for some null sequence $\nu(n)$.
(b) If $\lambda=0$, then $|x(n)|=e^{-n / \mu(n)}$ for some positive null sequence $\mu(n)$.

$$
5 \times 12=60
$$

