UNIVERSITY OF KERALA
 Model Question Paper
 First Degree Programme
 Semester VI Core Course
 MM: 1643 Complex Analysis II

Time: 3 Hours
Maximum Marks: 80

Section I

All the first 10 questions are compulsory. Each carries 1 mark.

1. Write the power series representation of $f(z)=\frac{1}{z-1}$ in a disc of radius 1 centered at $z=2$.
2. If f is analytic in a disc $B(\alpha, r)$ and $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$. What is the value of c_{k} ?
3. What are the singularities of $\frac{1}{\sin \frac{\pi}{z}}$?
4. Define a pole of order m for a function $f(z)$.
5. What type of singularity the function $e^{\frac{1}{z}}$ has at $z=0$.
6. Define removable singularity.
7. Find the residue at $z=0$ for the function $\frac{1}{z+z^{2}}$.
8. Find the principal value of $\int_{-\infty}^{\infty} x d x$.
9. What is the order of the zero of $z\left(e^{z}-1\right)$.
10. What type of singularity the function $\operatorname{cosec} z$ has at $z=0$.

Section II

Answer any 8 questions from this section.
Each question carries 2 marks
11. Find a power series representing the function $f(z)=\frac{1}{z^{2}}$, near $z=3$. Also find the radius of convergence.
12. Show that $\int_{C} \exp \left(\frac{1}{z^{2}}\right) d z=0$, where C is positively oriented circle $|z|=1$.
13. Determine and identify the singularities of $\frac{z^{2}}{1+z}$.
14. Find the residue of the function $f(z)=\frac{z^{3}+z^{2}}{(z-i)^{3}}$, at $z=1$.
15. Determine the order of the pole and residue at $z=0$ for $\frac{\sinh z}{z^{4}}$.
16. Write the principal part of the function $f(z)=z \exp \left(\frac{1}{z}\right)$ at its isolated singular point and determine the value of the singularity.
17. If z_{0} is a pole of the function f, show that $\lim _{z \rightarrow z_{0}} f(z)=\infty$.
18. State jordan's lemma.
19. Find the residue of $f(z)=\cot z$ at each of its singular points.
20. Let C denote the positively oriented circle $|z|=2$. Evaluate $\int_{C} \tan z d z$.
21. Find $\sum_{1}^{\infty} \frac{1}{n^{2}}$.
22. Evaluate $\sum_{k=0}^{\infty}\left(\frac{n}{k}\right)^{2}$.

Section III

Answer any 6 questions from this section.
Each question carries 4 marks.
23. State and prove Cauchy's integral formula.
24. Evaluate $\int_{C} \frac{d z}{z(z-2)^{4}}$, where C is the positively oriented circle $|z-2|=1$.
25. State and prove Cauchy's residue theorem.
26. Describe three types of isolated singular points.
27. Find the value of the integral $\int_{C} \frac{d z}{z^{3}(z+4)}$ taken counter-clockwise around $|z|=2$.
28. If z_{0} is a removable singular point of a finite function f, show that f is analytic and bounded in some neighbourhood of $0<\left|z-z_{0}\right|<\epsilon$ of z_{0}.
29. Show that $\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}}(-1<a<1)$.
30. Evaluate $\sum_{1}^{\infty} \frac{1}{n^{2}+1}$.
31. Find $\sum_{0}^{\infty}\binom{2 n}{n} \frac{1}{5^{n}}$.

Section IV

Answer any 2 questions from this section.
Each question carries 15 marks.
32. (a) Use cauchy's residue theorem to evaluate $\int_{C} \frac{z+1}{z^{2}-2 z}$ around the circle $|z|=3$ in the positive sense.
(b) Show that $\underset{z=\pi i}{\operatorname{Res}} \frac{z-\sinh z}{z^{2} \sinh z}=\frac{i}{\pi}$
33. (a) State and prove Casorati-Weierstrass theorem.
(b) Evaluate $\int_{0}^{\infty} \frac{x^{2}}{1+x^{6}} d x$.
34. (a) Show that $\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)^{2}}=\frac{2 \pi}{e^{3}}$.
(b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
35. (a) Use residues to evaluate $\int_{0}^{\pi} \frac{d \theta}{5+4 \cos \theta}$.
(b) Use residues to find the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{\sin x d x}{x^{2}+4 x+5}$.

