(Pages: 4)

Reg. No. :

Name :.....

Sixth Semester B.Tech. Degree Examination

(2013 Scheme)

13.605: SYSTEM SIMULATION (N)

Time: 3 Hours

Max. Marks: 100

Instructions: 1) Answer *all* questions in *Part-A* and *any one full* question from each module in Part-B.

- **2)** Any missing data shall be assumed and all assumptions shall be clearly stated.
- 3) Use of *statistical tables* allowed.

PART - A

- **1.** Enlist the components of a system.
- **2.** Define the term 'system engineering'.
- 3. What are cobweb models?
- **4.** For an exponential distributed random variable **X**, find the value of λ that satisfies the following relationship: $P(X \le 3) = 0.9P(X \le 4)$
- **5.** Random numbers generated by a random number generator called 'pseudo-random numbers'. Comment on the statement.
- 6. What are the statistical properties that must be possessed by random numbers?
- **7.** Why the inverse transform technique cannot be applied easily for generating normally distributed random variates?
- **8.** What do you mean by 'terminating simulation'?
- 9. What do you mean by 'face validity'?
- **10.** Enlist any two softwares used for discrete event simulation.

(2 x 10 = 20 marks)

PART B

MODULE – I

Develop a Cobweb model for the following market.
Demand 'D' = 10 - 0.9P
Supply 'S' = -2.4 + 1.2P₋₁
The market is cleared. Comment on the market.

OR

- **12.** Explain the Monte Carlo approach. Use the approach to evaluate the following:
 - (i) The area of a circle.
 - (ii) Value of π .

(20 marks)

(20 marks)

MODULE – II

13. Determine whether there is an excessive number of runs above or below the mean for the following sequence of numbers. Use $\alpha = 0.05$.

0.39	0.66	0.97	0.87	0.65	0.56	0.45	0.23	0.36	0.76
0.39 0.19 0.18 0.35	0.76	0.87	0.05	0.54	0.45	0.23	0.56	0.46	0.38
0.18	0.02	0.96	0.67	0.16	0.45	0.21	0.35	0.86	0.54
0.35	0.47	0.68	0.09	0.30	0.76	0.16	0.59	0.69	0.37

(20 marks)

OR

14. Consider combining three multiplicative generators with $m_1 = 32363$, $a_1 = 157$, $m_2 = 31727$, $a_2 = 146$, $m_3 = 31657$, and $a_3 = 142$. Generate 5 random numbers with the combined generator using initial seeds $X_{i,0} = 100, 300, 500$ for the individual generators i = 1, 2, 3.

(20 marks)

MODULE – III

- **15.(a)**Explain the direct transformation technique for Normal and Lognormal distributions. Using the technique, obtain normal variates with mean $\mu = 10$ and variance $\sigma^2 = 4$. (10 marks)
 - (b) Use inverse transform technique to sample from the following distributions:(i) Exponential and (ii) Triangular {with range (1, 10) and mode at x = 4}.

(10 marks)

16. Explain Next-event and Fixed-increment time advance mechanisms in
simulation.(20 marks)

OR

MODULE - IV

17. The number of vehicles arriving at a junction in a 5-minute period between 8:00 A.M. and 8:05 A.M. was monitored for five workdays over a 20-week period. The data collected is given below:

Arrivals /	0	1	2	3	4	5	6	7	8	9	10	11
Period												
Frequency	12	10	19	17	10	8	7	5	5	3	3	1

The histogram of the data appeared to follow a poisson distribution. Apply suitable test to test the hypothesis that the underlying distribution is poisson. Use $\alpha = 0.05$.

(20 marks)

OR

Explain in detail the process of verification and validation of simulation models. (20 marks)
