Model Question Paper SIXTH SEMESTER BTECH DEGREE EXAMINATION (2013 Scheme) **Branch: AERONAUTICAL ENGINEERING**

13.602 Computational Methods in Engineering(S)

Time: 3 Hours

Max Marks: 100

Part-A Answer all question. Each question carries 2marks.

- 1. Find the root of the following equation using Newton-Raphson Method. -5x+3.
- 2. Find the dominant eigen value and eigen vector of $\begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$.
- 3. Find the inverse of the matrix $\begin{bmatrix} -1 & 3 \\ 1 & 6 \end{bmatrix}$ using Guass- Jordan Method.
- 4. Evaluate (x+1)(x+2)(x+3)].
- 5. Evaluate $\frac{dx}{dx^2}$ taking h=0.2 using Trapezoidal rule. Can we use Simpson's rule? Give reason.

- 6. Write the formula for third order and fourth order Runge-Kutta Method.
- 7. Write the formula for Adam- Bash fourth predictor corrector formula.
- 8. Explain weighted residual for initial value problems.
- 9. Define the classification of partial differential equations of second order.
- 10. How to use Crank-Nicolson formula?.

Part-B Answer one question from each module. Each question carries 20 marks

Module -I

- 11.a) Solve the system of equation using Jacobi's iteration Method. $30x_1 - 2x_2 + 3x_3 = 75; x_1 + 17x_2 - 2x_3 = 48; x_1 + x_2 + 9x_3 = 15.$
 - b) Solve the system of equation using Gauss-Elimination Method.
 - 3x + 4y + 5z = 18; 2x y + 8z = 13; 5x 2y + 7z = 20
- 12. a) Using Guass Jordan method, solve the system of equation $5x_1 + x_2 + x_3 + x_4 = 4$; $x_1 + 7x_2 + x_3 + x_4 = 12$; $x_1 + x_2 + 6x_3 + x_4$

$$=-5; x_1 + x_2 + x_3 + 4x_4 = -6$$

b) Find numerically the largest eigenvalue of $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ by power method.

Module-II

13. a) Using Newton's Interpolation formula find y at x=8 from the table.

x	0	5	10	15	20	25
У	7	11	14	18	24	32

b) Using Lagrangian formula of interpolation find) from the following table.

x	1	2	3	4	7
у	2	4	8	16	128

14. a)Fit the following four points by the cubic splines

i	0	1	2	3
x _i	1	2	3	4
y_i	1	5	11	8

Use the end conditions= $y_3'' = 0$. Hence compute (1.5) and y'(2).

b) Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{dx}{x+y}$ using trapezoidal rule with k = 0.5 and k = 0.25.

Module-III

15.a) Given = $3x + \frac{y}{2}$ and) = 1. Find the values of .1) and .2) using Taylor series method

b) By applying fourth order Runge-Kutta method find .2) from = y - x, y(0) = 2 taking 0.1.

16.a) Using Adam's predictor –corrector method find .4) if satisfies = $\frac{1-xy}{x^2}$ and

) = 1; y(1.1) = 0.996; y(1.2) = 0.986; y(1.3) = 0.972.

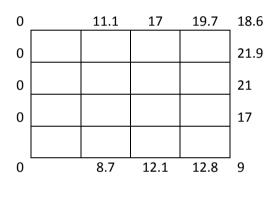
Module-IV

b) Using improved Euler's method find at : 0.1 and : 0.2 given

$$= y - \frac{2x}{y}, y(0) = 1$$

Module-IV

17. a)Solve the differential equation -y = x with y = 0, y(1) = 0 with $\frac{1}{4}$.using finite difference method.


b) Solve
$$+ u_{yy} = 0$$
 in $x \le 4, 0 \le y \le 4$. Given
 $(y,y) = 0, u(4,y) = 8 + 2y, u(x,0) = \frac{x^2}{2}$ and $(4, 4) = x^2$ taking $k = 1$. obtain the

result correct to three decimal.

18. a)Solve = $\frac{\partial^2 u}{\partial x^2}$ subject to the conditions t, 0 = 0, u(0, t) = 0 and t, t = t.

Compute for $\frac{1}{8}$ in two steps, using Crank-Nicolson formula.

b) Solve Laplace's equation t = 0 at the interior points of the square region given in the figure.
