Model Question Paper
 SIXTH SEMESTER BTECH DEGREE EXAMINATION

(2013 Scheme)
Branch: AERONAUTICAL ENGINEERING
13.602 Computational Methods in Engineering(S)

Time: 3 Hours
Max Marks: 100

Part-A
Answer all question. Each question carries 2marks.

1. Find the root of the following equation using Newton-Raphson Method. $-5 x+3$.
2. Find the dominant eigen value and eigen vector of $:\left[\begin{array}{cc}3 & -5 \\ -2 & 4\end{array}\right]$.
3. Find the inverse of the matrix $:\left[\begin{array}{cc}-1 & 3 \\ 1 & 6\end{array}\right]$ using Guass- Jordan Method.
4. Evaluate $(x+1)(x+2)(x+3)]$.
5. Evaluate $\frac{d x}{+x^{2}} \quad$ taking $\mathrm{h}=0.2$ using Trapezoidal rule. Can we use Simpson's rule? Give reason
6. Write the formula for third order and fourth order Runge-Kutta Method.
7. Write the formula for Adam- Bash fourth predictor corrector formula.
8. Explain weighted residual for initial value problems.
9. Define the classification of partial differential equations of second order.
10. How to use Crank-Nicolson formula?.

Part-B

Answer one question from each module. Each question carries 20 marks

Module -I

11.a) Solve the system of equation using Jacobi's iteration Method. $30 x_{1}-2 x_{2}+3 x_{3}=75 ; x_{1}+17 x_{2}-2 x_{3}=48 ; x_{1}+x_{2}+9 x_{3}=15$.
b) Solve the system of equation using Gauss-Elimination Method.

$$
3 x+4 y+5 z=18 ; 2 x-y+8 z=13 ; 5 x-2 y+7 z=20
$$

12. a) Using Guass -Jordan method, solve the system of equation

$$
\begin{gathered}
5 x_{1}+x_{2}+x_{3}+x_{4}=4 ; x_{1}+7 x_{2}+x_{3}+x_{4}=12 ; x_{1}+x_{2}+6 x_{3}+x_{4} \\
=-5 ; \quad x_{1}+x_{2}+x_{3}+4 x_{4}=-6
\end{gathered}
$$

b) Find numerically the largest eigenvalue of $=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]$ by power method.

Module-II

13. a) Using Newton's Interpolation formula find y at $x=8$ from the table.

x	0	5	10	15	20	25
y	7	11	14	18	24	32

b) Using Lagrangian formula of interpolation find) from the following table.

x	1	2	3	4	7
y	2	4	8	16	128

14. a)Fit the following four points by the cubic splines

i	0	1	2	3
x_{i}	1	2	3	4
y_{i}	1	5	11	8

Use the end conditions $=y_{3}^{\prime \prime}=0$. Hence compute '(1.5) and $y^{\prime}(2)$.
b) Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{d x}{x+y}$ using trapezoidal rule with: $k=0.5 \quad$ and $: k=0.25$.

Module-III

15. a) Given $=3 x+\frac{y}{2} \quad$ and) $=1$. Find the values of .1) and .2) using Taylor series method
b) By applying fourth order Runge-Kutta method find 2) \quad from $=y-x, y(0)=2$ taking : 0.1.
16. a) Using Adam's predictor -corrector method find .4) if satisfies $=\frac{1-x y}{x^{2}} \quad$ and $)=1 ; y(1.1)=0.996 ; y(1.2)=0.986 ; y(1.3)=0.972$.

Module-IV
b) Using improved Euler's method find at:0.1 and: 0.2 given
$=y-\frac{2 x}{y}, y(0)=1$

Module-IV

17. a)Solve the differential equation $-y=x \quad$ with $)=0, y(1)=0 \quad$ with : $\frac{1}{4} \quad$.using finite difference method.
b) Solve $+u_{y y}=0 \quad$ in $x \leq 4,0 \leq y \leq 4$. Given
b,y) $=0, u(4, y)=8+2 y, u(x, 0)=\frac{x^{2}}{2} \quad$ and $\left.; 4\right)=x^{2} \quad$ taking : $k=1$. obtain the result correct to three decimal.
18. a)Solve $=\frac{\partial^{2} u}{\partial x^{2}} \quad$ subject to the conditions; 0$)=0, u(0, t)=0 \quad$ and,$\left.t\right)=t$.

Compute for $\frac{1}{8}$ in two steps, using Crank-Nicolson formula.
b) Solve Laplace's equation $:=0$ at the interior points of the square region given in the figure.

