UNIVERSITY OF KERALA

B.Sc. DEGREE PROGRAMME IN CHEMISTRY

UNDER CHOICE BASED CREDIT AND SEMESTER SYSTEM

SCHEME AND SYLLABI

2013 ADMISSION ONWARDS

Core Courses, Foundation Course II, Open and Elective Courses
B.Sc. Degree Chemistry Programme

Aim and Objective of the Syllabi

Aim

The B.Sc. Degree Programme in Chemistry covers three academic years consisting of six semesters and aims to provide the students with an in-depth understanding of and training in chemical sciences. The syllabus has been designed to stimulate the interest of the students in chemistry and prepared in order to equip the students with a potential to contribute to the academic and industrial requirements of the society. The new, updated syllabus is based on an interdisciplinary approach and is infused with a new vigour and more depth. Chemistry being an experimental science, due importance is given to the development of laboratory and instrumentation skills.

Objective

The main objective is to provide to the students an in-depth understanding of the basic concepts of chemical sciences and enable them with tools needed for the practice of chemistry, which remains a discipline with much stress on experimentation. It attempts to provide a detailed knowledge of the terms, concepts, methods, principles and experimental techniques of chemistry.

Course structure

The First Degree programme in Chemistry comprises of fourteen core courses, one project course, two elective courses, one core-specific foundation course in addition to one area-specific foundation course, the complementary courses and language courses. Among the two open/elective courses, the one offered in the fifth semester is open to students from other Majors. The details of the Course Structure are given in Table I. Table II gives the details of the contact hours and credits for the Core Courses, Foundation Course II, Open Course and Elective Course, Table III gives the details of Open Courses and Table IV gives the details of the Elective Courses, Table V gives distribution of Complementary Courses in different Semesters, and Table VI gives the consolidation of Grade of a Course.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Study component</th>
<th>Instructional hrs/Week</th>
<th>Credit</th>
<th>Duration of Uty. Exam</th>
<th>Evaluation</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN1111</td>
<td>English I</td>
<td>T: 5 P: 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1111</td>
<td>Additional Language I</td>
<td>4</td>
<td>3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>EN1121</td>
<td>Foundation Course I</td>
<td>4</td>
<td>2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM1131.2</td>
<td>Complementary Course I</td>
<td>4</td>
<td>3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PY1131.2</td>
<td>Complementary Course II</td>
<td>2</td>
<td>2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complementary Course Lab of PY1131.2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1141</td>
<td>Core Course I</td>
<td>2</td>
<td>4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core Course Lab I of CH1141</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>EN1211</td>
<td>English II</td>
<td>4</td>
<td>3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN1212</td>
<td>English III</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1211</td>
<td>Additional Language II</td>
<td>4</td>
<td>3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1221</td>
<td>Foundation Course II</td>
<td>2</td>
<td>2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM1231.2</td>
<td>Complementary Course III</td>
<td>4</td>
<td>3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PY1231.2</td>
<td>Complementary Course IV</td>
<td>2</td>
<td>2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complementary Course Lab of PY1231.2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contd……..
First Degree Programme in Chemistry

Course structure, Scheme of Instruction and Evaluation

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Study component</th>
<th>Instructional hrs/Week</th>
<th>Credit</th>
<th>Duration of Uty. Exam</th>
<th>Evaluation</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>P</td>
<td>hrs</td>
<td>Credit</td>
<td>Duration</td>
</tr>
<tr>
<td>III</td>
<td>EN1311</td>
<td>English IV</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>1311</td>
<td>Additional Language III</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>MM1331.2</td>
<td>Complementary Course V</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>PY1331.2</td>
<td>Complementary Course VI</td>
<td>3</td>
<td>3</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complementary Course Lab of PY1331.2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CH1341</td>
<td>Core Course II</td>
<td>3</td>
<td>3</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core Course Lab I of CH1341</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>EN1411</td>
<td>English V</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>1411</td>
<td>Additional Language IV</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>MM1431.2</td>
<td>Complementary Course VII</td>
<td>5</td>
<td>4</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>PY1431.2</td>
<td>Complementary Course VIII</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3hrs</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>PY1432.2</td>
<td>Complementary Course Lab of PY1131.2, PY1231.2, PY1331.2 & PY1431.2</td>
<td>4</td>
<td></td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>CH1441</td>
<td>Core Course III</td>
<td>3</td>
<td>3</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>CH1442</td>
<td>Core Course IV-Lab I of CH1141, CH1341 & CH1441</td>
<td>2</td>
<td>2</td>
<td>3hrs</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Contd……….
First Degree Programme in Chemistry
Course structure, Scheme of Instruction and Evaluation

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Study component</th>
<th>Instructional hrs/Week</th>
<th>Credit</th>
<th>Duration of Uty. Exam</th>
<th>Evaluation</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T P</td>
<td></td>
<td></td>
<td>CE ESE</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>CH1541</td>
<td>Core Course V</td>
<td>3 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CH1542</td>
<td>Core Course VI</td>
<td>4 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1543</td>
<td>Core Course VII</td>
<td>4 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1544</td>
<td>Core Course VIII Lab II</td>
<td>5 3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1545</td>
<td>Core Course IX Lab III</td>
<td>4 2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1551</td>
<td>Open Course</td>
<td>3 2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project</td>
<td>2 -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>CH1641</td>
<td>Core Course X</td>
<td>3 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>CH1642</td>
<td>Core Course XI</td>
<td>4 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1643</td>
<td>Core Course XII</td>
<td>4 4</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1644</td>
<td>Core Course XIII Lab IV</td>
<td>5 3</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1645</td>
<td>Core Course XIV Lab V</td>
<td>3 2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1661.1/CH1661.2/CH1661.3/CH1661.4</td>
<td>Elective Course</td>
<td>3 2</td>
<td>3hrs</td>
<td>25% 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH1646</td>
<td>Project and Factory Visit</td>
<td>3 4</td>
<td>- Viva voce</td>
<td>-</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

A). Language Courses = 9, B) Foundation Courses = 2
C) Complementary Courses = 9, D). Core Courses = 14, E) Open Course = 1,
F) Elective Course = 1, G) Project = 1
Total Courses = 9+2+9+14+1+1+1 = 37.
Total Credits = 18+18+18+24+19+23 =120.
B.Sc. Degree Programme in Chemistry
Table II. Scheme of Instruction of Core Courses, Foundation Course II, Open Course and Elective Course
2013 admission onwards

<table>
<thead>
<tr>
<th>Course number</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semest er I</th>
<th>Semest er II</th>
<th>Semest er III</th>
<th>Semest er IV</th>
<th>Semest er V</th>
<th>Semester VI</th>
<th>V Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact Hours</td>
<td>Credit</td>
<td>Contact Hours</td>
<td>Credit</td>
<td>Contact Hours</td>
<td>Credit</td>
<td>Contact Hours</td>
</tr>
<tr>
<td>C.C. I</td>
<td>CH1141</td>
<td>Inorganic Chemistry I</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>F.C. II</td>
<td>CH1221</td>
<td>Methodology and Perspectives of Sciences and General Informatics</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C.C. II</td>
<td>CH1341</td>
<td>Inorganic Chemistry II</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. III</td>
<td>CH1441</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. IV</td>
<td>CH1442</td>
<td>Lab I of CH1141,CH1341,CH1441(Inorganic Qualitative Analysis)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C.C. V</td>
<td>CH1541</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. VI</td>
<td>CH1542</td>
<td>Inorganic Chemistry III</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. VII</td>
<td>CH1543</td>
<td>Physical Chemistry II</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. VIII</td>
<td>CH1544</td>
<td>Lab Course II (Inorganic volumetric analysis)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. IX</td>
<td>CH1545</td>
<td>Lab Course III (Physical chemistry experiments)</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.C.</td>
<td>CH1551</td>
<td>Any One of the Options</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. X</td>
<td>CH1641</td>
<td>Organic Chemistry II</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. XI</td>
<td>CH1642</td>
<td>Organic Chemistry III</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. XII</td>
<td>CH1643</td>
<td>Physical Chemistry III</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C. XIII</td>
<td>CH1644</td>
<td>Lab Course IV (Organic chemistry experiments)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.CXIV</td>
<td>CH1645</td>
<td>Lab Course V (Gravimetry)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.C.</td>
<td>CH1661</td>
<td>Any one of the options</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.C.XV</td>
<td>CH1646</td>
<td>Project</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the other requirements as the components of continuous evaluation are satisfied, for each of the practical courses in semester V is given a credit of 2 even though the examinations are on semester 6.
B.Sc. Degree Programme in Chemistry
Table III. Distribution of Open Course offered to students of other disciplines

Semester V

<table>
<thead>
<tr>
<th>Semester</th>
<th>No. of Hours / Week</th>
<th>Credits</th>
<th>Course Code</th>
<th>Title of the Course</th>
<th>Instructional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lectures</td>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>CH1551.1</td>
<td>Essentials of Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH 1551.2</td>
<td>Fundamentals of Chemistry & Its Application to Everyday Life</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH 1551.3</td>
<td>Environmental Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. Degree Programme in Chemistry
Table IV. Distribution of Elective Course offered in Semester VI

<table>
<thead>
<tr>
<th>Semester</th>
<th>No. of Hours / Week</th>
<th>Credits</th>
<th>Course Code</th>
<th>Title of the Course</th>
<th>Instructional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lectures</td>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>CH1661.1</td>
<td>Supramolecular, Nano Particles and Green Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH 1661.2</td>
<td>Computational, Combinatorial and Physical Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH 1661.3</td>
<td>Polymer chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH 1661.4</td>
<td>Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>
Table V
Distribution of Complementary Courses in different Semesters
Complementary Courses - 4 Total Credits – 14
One Semester – 18 Weeks

<table>
<thead>
<tr>
<th>Sem</th>
<th>Hours/Week</th>
<th>Number Of Credits</th>
<th>Course Title</th>
<th>Instructional Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>CH1131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>CH1231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>CH1331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3×18 = 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>CH1431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3×18 = 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>CH1432</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2×18 = 36</td>
</tr>
</tbody>
</table>

Table VI. Consolidation of Grade of a course

<table>
<thead>
<tr>
<th>Exam</th>
<th>Grade</th>
<th>Grade points(G)</th>
<th>Weightage (W)</th>
<th>Weighted grade points (WxG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grade of Course = Total weighted grade points / Total weightage =
Evaluation of each course shall involve Continuous Evaluation (CE) with a weightage of 25 % and End Semester evaluation (ESE) with a weightage of 75 %. A system of performance based direct grading will be used with Grades A-E and the Grade Points as shown below.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Grade</th>
<th>Grade Point</th>
<th>Grade Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>A</td>
<td>4</td>
<td>3.50-4.00</td>
</tr>
<tr>
<td>Very Good</td>
<td>B</td>
<td>3</td>
<td>2.50-3.49</td>
</tr>
<tr>
<td>Good</td>
<td>C</td>
<td>2</td>
<td>1.50-2.49</td>
</tr>
<tr>
<td>Average</td>
<td>D</td>
<td>1</td>
<td>0.50-1.49</td>
</tr>
<tr>
<td>Below Average</td>
<td>E</td>
<td>0</td>
<td>0.00-0.49</td>
</tr>
</tbody>
</table>

I. 1. CONTINUOUS EVALUATION FOR LECTURE COURSES

The Continuous evaluation will have 25% percentage weightage and will be done continuously during the semester. CE components are
(i) Attendance for lecture and laboratory sessions (to be noted separately where both lecture and laboratory hours have been specified within a course);
(ii) Assignment /seminar and
(iii) Test
Grades A-E will be awarded for each component. The weightage is shown in Table I.1. There will be two class tests for which, the better of the two grades obtained will form part of CE. Seminar for each course to be organized by the course teacher and assessed along with a group of teachers in the Department. The topic selection by the student for assignments/seminar will be with the approval of the course teacher.
Total weightage is 10.

I. 1. Components of CE For Lecture Courses

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
<th>Weight</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attendance</td>
<td>1</td>
<td>>90% - A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><90 - >85% - B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><85 - >80% - C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><80 - >75% - D <75% - E</td>
</tr>
<tr>
<td>2</td>
<td>Assignment / Seminar</td>
<td>1</td>
<td>A-E</td>
</tr>
<tr>
<td>3</td>
<td>Two tests*</td>
<td>2</td>
<td>A-E</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>A-E</td>
</tr>
</tbody>
</table>

* Average of the two tests will be taken
I. 1. 1. EVALUATION OF THE ASSIGNMENTS AND SEMINAR

The assignment typed/written on A4 size paper should be 4-6 pages. The minimum duration of the seminar is fifteen minutes and the mode of delivery may use audio-visual aids if available. Both the assignment and the seminar will first be evaluated by awarding grades A-E based for each of the four components below in Table I.1.1. The seminar is to be conducted within the contact hour allotted for the course.

I. 1. 1. Mode of Assignments / Seminar Evaluation

<table>
<thead>
<tr>
<th>No</th>
<th>Main Component</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adherence to overall structure & submission deadline</td>
<td>All four main components present & satisfactory : A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only three : B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only two : C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one : D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None : E</td>
</tr>
<tr>
<td>2</td>
<td>Content & grasp of the topic</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lucidity / Clarity of presentation</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>References / Interaction/Overall effort</td>
<td></td>
</tr>
</tbody>
</table>

The following explanatory guide lines in Table I.1.1.1 are suggested tentatively for the assessment of each of the above main components as satisfactory or not.

I. 1. 1. 1. Guidelines for Assignments / Seminar Evaluation

<table>
<thead>
<tr>
<th>No</th>
<th>Main Component</th>
<th>Sub-Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adherence to overall structure & submission deadline</td>
<td>i. Punctual submission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Adequate length/duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Inclusion of Introduction, Discussion & Summary sections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Absence of errors/mistakes</td>
</tr>
<tr>
<td>2</td>
<td>Content & grasp of the topic</td>
<td>i. Coverage of topic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Understanding of topic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Logical organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Originality (No copying from a source or plagiarism)</td>
</tr>
<tr>
<td>3</td>
<td>Lucidity / Clarity</td>
<td>i. Clarity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Effective presentation/delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Neatness of presentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Inclusion of appropriate diagrams /equations /structures etc</td>
</tr>
</tbody>
</table>
I. 1. 2. DETAILS OF THE CLASS TEST

1. The test has a duration of 1½ hours.
2. Each question paper has four parts: A, B, C and D and the weightage are shown in Table 1.1.2.
3. Part A contains two questions. Each question contains four sub questions. Each question has a weight = 1. The questions may be in the forms - multiple choices match the following, name the following or fill in the blanks or any one word-answer question (Objective).
4. Part B contains five questions. Out of these, the students have to answer three questions. Each answer should contain four points. Each question has a weight = 1(Short Answer).
5. Part C contains five questions of which the candidate has to answer three. Each question has a weight = 2. The answer must contain 8 points (Short Essay).
6. Part D contains two questions of which the candidate has to answer one. Each question has a weight = 4. Each answer must contain 16 points (Long Essay).
7. Total weightage for the entire questions to be answered is 15.

<table>
<thead>
<tr>
<th>Question No</th>
<th>No and Type of Question</th>
<th>Weight</th>
<th>Weighted grade point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A: I.1-4; II. 4-8</td>
<td>2 Objective/fill up the blanks/one word</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Part B: 9-13</td>
<td>3 out of 5; Short Answer</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Part C: 14-18</td>
<td>3 out of 5; Short Essay</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Part D: 19-20</td>
<td>1 out of 2; Long Essay</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total = 15
I. 2. CONTINUOUS EVALUATION FOR LABORATORY COURSES

The Continuous evaluation will have 25% percentage weightage. For 5th semester, only CE evaluation will be done; the corresponding ESE will be in 6th semesters. Grades A-E will be awarded for each component. There will be two quizzes / tests for which, the better of the two grades obtained will form part of CE. The CE components are:

(i) Attendance for laboratory sessions
(ii) Experiment (Lab) Report on completion of each set of experiments
(iii) Laboratory Skill and
(iv) Quiz / Test.

These are summarized below in Table I. 2. Total Weightage is 10.

<table>
<thead>
<tr>
<th>No</th>
<th>Component</th>
<th>Weightage</th>
<th>Grades</th>
</tr>
</thead>
</table>
| 1 | Attendance | 1 | >90% - A
| | | | <90 - >85% - B |
| | | | <85 - >80% - C |
| | | | <80 - >75% - D |
| | | | <75% - E |
| 2 | Experiment (Lab) Report | 1 | A-E [See Table I. 2. 1. Below] |
| 3 | Laboratory Skill | 1 | A-E [See Table I. 2. 2. Below] |
| 4 | Quiz / Test | 1 | A-E [See I. 2.3. below] |

The guidelines for evaluating the two main components 2-4 using sub-component are presented below.

I. 2. 1. EVALUATION OF THE EXPERIMENT (LAB) REPORT

On completion of each experiment, a report should be presented to the course teacher as soon as the experiment is over. It should be recorded in a bound note-book and not on sheets of paper. The experimental description should include aim, principle, materials/apparatus required/used, method/procedures, and tables of data collected, equations, calculations, graphs, and other diagrams etc. as necessary and final results. Careless experimentation and tendency to cause accidents due to ignoring safety precautions will be considered as demerits.
I. 2. 1. Mode of EXPERIMENT (LAB) Report Evaluation

<table>
<thead>
<tr>
<th>No</th>
<th>Sub Component</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punctual submission and Neat presentation</td>
<td>All four sub-components present & satisfactory : A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only three : B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only two : C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one : D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None : E</td>
</tr>
<tr>
<td>2</td>
<td>Inclusion of aim, materials, procedure etc</td>
<td>All four sub-components present & satisfactory : A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only three : B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only two : C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one : D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None : E</td>
</tr>
<tr>
<td>3</td>
<td>Calculations and absence of errors/mistakes</td>
<td>All four sub-components present & satisfactory : A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only three : B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only two : C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one : D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None : E</td>
</tr>
<tr>
<td>4</td>
<td>Accuracy of the result</td>
<td>All four sub-components present & satisfactory : A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only three : B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only two : C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one : D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None : E</td>
</tr>
</tbody>
</table>

I. 2. 2. EVALUATION OF THE LAB SKILL

<table>
<thead>
<tr>
<th>Mode of Lab Skill Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

I. 2. 3. EVALUATION OF THE LAB QUIZ/TEST

The test for a lab course may be in the form of a quiz and two such tests are to be conducted. Based on the performance in answering the quiz, grades A-E may be awarded and the better grade earned in these two will be counted for CE. Two teachers, one of which is the course teacher, should conduct the quiz/test within the assigned lab contact hours.

II. 1. END SEMESTER EVALUATION FOR LECTURE COURSES

The end semester evaluation will be done by the University at the end of the semester and it will have a 75% percentage weightage. End of semester University theory examination will be of 3-hr duration. Grades A-E will be awarded as per Regulations and the general aspects of evaluation.
II. 1. 1. END SEMESTER QUESTION PAPER PATTERN

1. The theory examination has a duration of 3 hours
2. Each question paper has four parts: A, B, C and D
3. Part A contains four questions. Each question contains four sub questions. Each question has a weight = 1. The questions may be in the forms - multiple choices, match the following, name the following or fill in the blanks or any one word- answer question (Objective type).
4. Part B contains twelve questions. Out of these twelve questions, the students have to answer eight questions. Each answer should contain four points. Each question has a weight = 1 (Short Answer type).
5. Part C contains eight questions of which the candidate has to answer five. Each question has a weight = 2. The answer must contain 8 points (Short Essay type).
6. Part D contains three questions of which the candidate has to answer two. Each question has a weight = 4. Each answer must contain 16 points (Long Essay type).
7. The total weightage for the entire questions to be answered is 30.

II. 2. END SEMESTER EVALUATION FOR LABORATORY COURSES
The components to be assessed as part of ESE of Lab courses and their weightage are discussed along with the syllabi for each of such laboratory courses in the subsequent sections.

Semester VI CH1646

The Project work may be conducted individually or by a group comprising of a maximum of 5 students during semester V and VI. The work of each student/group shall be guided by one faculty member. After the completion of the work, the student shall prepare 2 copies of the Project report. The copies certified by the concerned guide & the Head of the Department shall be submitted prior to the completion of the sixth semester. The typed copy of the report may have a minimum of 25 pages. It should contain Title page, Introduction, Review, Result and Discussion, References etc. These reports will be evaluated by a board of two Examiners appointed by the University. The examiners should affix their dated signatures in the facing sheet of the Project report. The evaluation/Viva voce of the Project report is conducted on a separate day. The students have to present their work individually before the examiners on the Viva-Voce day. The examiners shall consult each other and award grades based on the various components given in the Table 1 below. There shall be no continuous assessment for dissertation/project work.

The Factory/ research institution visit report should submitted during the Lab course examination/Viva voce and the report must be evaluated and the examiners should affix their dated signatures in the facing sheet. Good presentation of any one Chemical Factory/Research centre visit may be considered for A grade. Other presentations are graded accordingly into B, C, D etc. Candidate is expected to make individual report. So variety must be appreciated. Weightage for study tour report is 4.
III EVALUATION OF THE PROJECT AND FACTORY/RESEARCH INSTITUTE VISIT (CHEMISTRY)

<table>
<thead>
<tr>
<th>No.</th>
<th>Main component</th>
<th>Weight</th>
<th>Sub components</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>,, Materials and methods</td>
<td>4</td>
<td>Materials and methods</td>
<td>Excellent : A Very Good: B Good: C Average: D None: E</td>
</tr>
<tr>
<td>3</td>
<td>,, Results and Discussion</td>
<td>4</td>
<td>Results and Discussion</td>
<td>Excellent : A Very Good: B Good: C Average: D None: E</td>
</tr>
<tr>
<td>4</td>
<td>,, Conclusion and References</td>
<td>4</td>
<td>Conclusion and References</td>
<td>Excellent : A Very Good: B Good: C Average: D None: E</td>
</tr>
<tr>
<td>5</td>
<td>Project Presentation 5</td>
<td>i) Clarity and understanding ii) Effective presentation iii) Time Management iv) Interaction</td>
<td>All four: A Three: B Two: C One: D None: E</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Factory/research institution Visit</td>
<td>4</td>
<td>i) Brief Description of factory/Institute ii) Figures/flow charts iii) Details of instruments/facilities iv) Neatness of presentation</td>
<td>All four: A Three: B Two: C One: D None: E</td>
</tr>
<tr>
<td></td>
<td>Total for Project</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Viva-Voce</td>
<td>5</td>
<td>Understanding of the i) Review ii) Objectives iii) Methodology iv) Results</td>
<td>All four: A Three: B Two: C One: D None: E</td>
</tr>
<tr>
<td></td>
<td>Total for Viva-voce</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The grades for Project/dissertation shall be calculated by consolidating the grades secured for the submission of Project/dissertation and the project based via-voce, taking into account that the Project/dissertation has a weight of ‘3’ and that of project based via-voce has a weight of ‘1’.

IV GENERAL ASPECTS OF COURSE AND CREDIT TRANSFER

As per Regulations, students from other institutions may be admitted in the 3rd and 5th by transfer subject to conditions prescribed by the University. Such transfers to a B. Sc. Chemistry Programme can be permitted only from a similar semester based three year degree programme with Chemistry as the major and maths as a compulsory complementary course and physics as a desirable complementary course. The requirements of the language, foundation and elective courses will be decided as per views of the concerned BoS. For core course transfers, the transferable credit per course is limited to 4 (as this is at present the highest credit per course in Univ. of Kerala) even if the source Institution awards a credit >4. If, however, a core course with comparable content, contact hours and mode of evaluation has a credit <4 at the source Institution, then the transferee may be awarded a credit in par with the similar course at this University.

V EXPERIMENT IN CHEMISTRY USING MICRO SCALE TECHNIQUE

Chemistry being an experimental science, testing the theory by doing practical has always been the method of deep understanding of the subject of chemistry.

Today, Laboratories in academic institutions consume large amounts of chemicals. The ever rising cost of chemicals is adversely affecting many of the practical exercises. The fumes and gases evolved during chemical reactions are threatening the environment. The awareness of eco-friendly experiments is thus becoming a global phenomenon.

It is in this context that a need has arisen which was never so acute here before that the laboratory chemicals are used at a minimal level without affecting the skill and understanding of a student performing the Lab sessions. The conventional methods use large scale quantities of chemicals for the experiments. The change brought about in the present scheme makes use of micro scale techniques and two burette titration in the Chemistry practicals. This has been done without any conceptual deviation of the principles of experiments in chemistry. Where quantities were used on gram scale, the new method envisages the use in milligram scale. Where volumes of solutions were used in multiples of 10 to 100, the new method prefers only few ml. scales. This reduces the expenditure on chemicals to a great extent. The apparatus are of smaller size. The scheme saves time and energy of a student while performing the experiments.
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME
Core Course No. - 1 Course Code– CH1141
Semester – I Credit-4
Inorganic Chemistry I
(2013 admission onwards)

Lecture -Tutorial-Lab: 2-0-2 36 hrs.

Aim of the Course
The course builds on the plus-two level introductory chemistry and familiarizes the students with the theoretical aspects of atomic structure. Subsequently, it delves into the principles of qualitative and quantitative inorganic analysis at the laboratory. The course also introduces the students an idea about environmental chemistry and different types of pollution.

Course objective

COURSE OFFERING AND CREDITS
Semester I; credits: Four

COURSE OBJECTIVES
1. To understand the structure of atomic structure and properties of elements in relation to electronic configuration .
2. To learn the principles of chemical analysis and environmental chemistry. Upon course completion, the student will be able to appreciate how the inner structure of elements dictates the chemical properties of elements. Students will acquire basic laboratory skills required for chemical analysis and become familiar with data collection, record keeping and data analysis in a chemical laboratory.

COURSE TRANSACTION FORMAT
Lecture-Tutorial-Lab: 2-0-2 hours per week; eighteen 5-day weeks per semester.
Contact hours per semester: 36 hrs lecture and 36 hrs lab instruction.

MODE OF EVALUATION
PART A.
Continuous Evaluation: 25% weightage, continuous during semester. CE components are (i) Attendance for lecture and laboratory components, separately; (ii) class test for lecture part and (iii) assignment / seminar for lecture part, for which grades A-E will be awarded as per Regulations for each component. There will be two class tests (for which, the better of the two grades obtained will form part of CE) and one assignment / seminar during the semester lecture part.
End Semester Evaluation: 75% weightage. End of semester University theory examination will be of 3-hr duration. Grades A-E will be awarded as per Regulations [See Regulations].

PART B.
Continuous Evaluation: CE component for Semester I is (i) Attendance.
End Semester Evaluation: End of semester University laboratory examination will be at the end of 4th semester. Grades will be awarded as per Regulations. [See Regulations].
Course outline

Module I - Atomic Structure 6 hrs.

Introduction to the structure of atom - Dual nature of electron - de Broglie equation - matter waves and electromagnetic waves - experimental verification of de Broglie relation - Heisenberg’s uncertainty principle - expression and significance. Wave mechanical concept of the atom - Schrodinger equation - Charge cloud and probability concepts - orbitals, radial and angular probability distribution curves, shapes of orbitals. Particle in a one-dimensional box. eigen functions and eigen values. Particle in three dimensional box.

Module II - Electronic Configuration and Periodicity 6 hrs.

Quantum numbers - Pauli’s exclusion Principle - aufbau Principle – Hund’s rule - Electronic configuration of atoms - classification of elements into s, p, d, f blocks - atomic radii, ionization enthalpy, electron gain enthalpy and electronegativity- Pauling’s scale, Mulliken and Alred - Rochow scale- ionic character - periodicity - horizontal, vertical and diagonal relationships - anomalous behaviour of the first element of a group.

Module III - Analytical Principles - I 6 hrs.

Inorganic qualitative analysis - Common ion effect - solubility product - principle and procedure of elimination of interfering anions - precipitation of cations. Microscale analysis – Advantages

Module IV - Analytical Principles – II 6 hrs.

Module V Environmental Chemistry - Air Pollution 6 hrs.

Environmental segments - Lithosphere, Hydrosphere, Biosphere, Atmosphere - Composition and structure of atmosphere - Troposphere, Stratosphere, Mesosphere, Thermosphere Air pollution - 3 types of classification, types of pollutants - CO, CO₂,
NO, SO₂, H₂S, Cl₂, CFC, particulate matter, metals, fly ash, asbestos, hydrocarbons - their source and influence - ozone layer depletion, ozone hole, protection of ozone umbrella - acid rain, green house effect, smog - management of air pollution.

Module VI - Environmental Chemistry - Water and Soil Pollution 6 hrs.

Water pollution: Classification of pollutants - organic, inorganic, suspended solids and sediments, radioactive materials, Heat, industrial waste, sewage water, detergents, agricultural pollutants - treatment of industrial waste water - Quality of drinking water - Indian standard and WHO standard - Dissolved oxygen - BOD, COD.

Soil pollution - Pesticides, Fertilizers, Industrial waste, plastics - Control of pollution

References

1) Manas Chanda, “Atomic structure and Chemical Bond including Molecular spectroscopy”
2) E.S. Gilreath “Fundamental concepts of Inorganic Chemistry”
3) Puri, Sharma and Kalia “Inorganic Chemistry”
4) Madan “Inorganic Chemistry”.
5) Manku , “Theoretical principles of Inorganic Chemistry” -
6) M. C. Dey and J. Selbin “Theoretical Inorganic Chemistry”.
8) S. K. Banerji, “Environmental Chemistry”.
9) A. I. Vogel, “Text book of Qualitative Analysis”
11) Day & Underwood “Quantitative analysis: laboratory manual”
12) A. K. De “Environmental Chemistry - An introduction”
13) A. K. Srivasthava and P. C. Jain, “Chemical Analysis”
14) B. K. Sharma “Air Pollution”.
15) V. K. Ahluwalia “Environmental Chemistry”
16) G.W. vanLoon and S. J. Duffy “Environmental Chemistry: A global perspective”
University of Kerala
Model Question Paper of B.Sc. Chemistry Programme
2013 onwards
Semester -I Core Course-1 Course Code - CH1141
INORGANIC CHEMISTRY I

Time: Three Hours Maximum Weightage: 30
Section- A, Weightage 0.25 each
Answer all Questions. Answer in one word / sentence

I. Fill in the blanks
1. Splitting of spectral lines in a magnetic field is called __________
2. According to the uncertainty principle the accurate and simultaneous determination of the velocity and __________ of a microscopic particle is impossible
3. Titrations involving acidified K2Cr2O7 are examples for __________ titrations.
4. Murexide is a __________ indicator

II. Answer in one word
5. Quantum number which determines the orbital angular momentum of the electron
6. Ozone layer prevents __________ radiation to reach earth surface.
7. __________ is the part of the atmosphere that is ionized by solar radiation.
8. The __________ in photochemical smog is the main chemical which causes irritation to eyes, causing them to water and sting.

III. Fill in the blanks using appropriate words
9. Dissociation of acetic acid is suppressed on adding sodium acetate. This is an __________ example for __________
10. A substance is precipitated when its __________ exceeds the solubility product.
11. In the gravimetric analysis of Nickel, __________ is the precipitating agent
12. The process of allowing the precipitate to stand for several hours in contact with the solution from which it was formed is called __________

IV. Answer in one word
13. Give the unit of dipole moment.
14. In the stratosphere, fluorine from the CFC's change to which compound.
15. Which is the group reagent/s used for 1st group analysis ?
16. Name a carrier gas used in gas chromatography.

0.25×16 = 4

Section B, Weightage – 1 each (Short answer type)
Answer any 8 from the following. Each answer must contain 4 points.

17. Draw all the d orbitals.
18. Write the Schrodinger wave equation. Explain the terms.
19. State and illustrate Pauli’s Exclusion Principle
20. Arrange F, Cl, Br and I in the increasing order of their electron gain enthalpy values. Give appropriate reason.
21. What is common ion effect. Give an example
22. What are the different types of titrations.
23. Describe the effect of temperature on precipitation
24. What is meant by Rf value? What is its use in chromatography?
25. Name the major pollutants in air?
26. What are the factors affecting the purity of water?
27. What is smog?
28. Distinguish between titrant and titrate.

Section C, Weightage – 2 each (Short essay type)

Answer any 5 from the following. Each answer must contain 8 points.

29. Explain the diagonal relationship of elements with example
30. Explain uncertainty principle clearly bringing out its physical significance.
31. Write a note on (a) metallochromic indicators. (b) elimination of phosphate anion during the analysis of cations
32. Describe briefly co-precipitation and post-precipitation.
33. Explain the source and hazards of fly ash and asbestos.
34. Explain briefly soil pollution.
35. Obtain the solution of Schrodinger wave equation of a particle in a one-dimensional box.
36. Discuss the applications of common ion effect and solubility product in quantitative analysis

Section D, Weightage 4 each (Long essay type)

Answer any two from the following.

37. Discuss the principles involved in various chromatographic separations.
38. Write an essay on plastic waste and long term use of fertilizers.
39. Explain the electronegativity in terms of Pauling, Mulliken and Alred–Rochow scales.
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME
SEMMESTER - 2 CREDIT- 3

Foundation Course No. – 2 COURSE CODE- CH1221
Methodology and Perspectives of Sciences and General Informatics
(2013 admission onwards)

Lecture-Tutorial-Lab: 2-0-2 hours per week; eighteen 5-day weeks per semester. Contact hours per semester: 36 hrs lecture and 36 hrs related lab instruction.

Aim of the Course

The aim is to familiarize the student with the methodology and perspectives of Science and the importance of Science in the development of culture. The course introduces the student to the history of evolution of chemistry as a major branch of science. The course also focuses the various elementary aspects of research in chemistry. The contents emphasize the role of informatics in understanding Chemistry and to learn computer based applications in analysis and presentation of experimental data.

Objective of the Course

On completion of the course the students will be able to understand how Science or in special Chemistry works. They will get a basic understanding to do self-directed experimentation work and research in chemistry under the guidance and supervision of a mentor.

Course outline

Module – 1: Methods and Tools of Science & Experimentation in Science 6 Hrs
Laws of science – Basis for scientific laws and factual truths – revolutions in science – science and technology - hypothesis – observations and proofs. Revision of scientific theories and laws. Importance of models, simulations and virtual testing

Module II- Science, Society and Various approaches of Science 6 Hrs
Better understanding of Science-Science and culture, citizenship, social cohesion, work, employment, development and research- Multicultural society and Science strategies to meet challenges in twenty first century, Globalisation- Population
Knowledge transfer process- Knowledge dissemination and utilization- Process and product of Science- Acquisition of various basic process skills of Science- Problem solving method – enquiry vs discovery approach- Development of Scientific creativity - induction-deduction methods –Integration of various methods

Module III – Evolution of Chemistry as a discipline of science 6Hrs

Evolution of Chemistry - ancient speculations on the nature of matter, early form of chemistry-alchemy, Robert Boyle and the origins of modern chemistry in the latter 1600s - origin of modern chemistry - Antoine Lavoisier and the revolution in chemistry - Chemical atomism—background and thought of John Dalton. Atom models- Daltons, J. J. Thomson, Rutherford, Bohr model – Major contributions of Friedrich Wöhler, Dmitri Mendeleeev, Michael Faraday and Marie Skłodowska-Curie. Structure of chemical science: scope of chemical science, branches of chemistry. Role of Chemistry as a central science connecting Physics, Biology and other branches of science. Basic ideas of interdisciplinary areas involving Chemistry

Module IV – Overview of Information Technology 6 Hrs

Features of the modern personal computer and peripherals – computer network and internet – overview of operating system and major application of softwares. Data information and knowledge – knowledge management – internet as a knowledge repository – academic search techniques – creating your cyber presence – open access initiation – open active publishing models – Basic concepts of IPR, copy right and patents – plagiarism – Introduction to use of IT in teaching and learning –educational softwares – INFLIBNET, NICNET, BRNET, NPTEL, VIRTUAL LABS OF MHRD – academic services.

Module V Research in Chemistry 6 Hrs

Selecting a topic – hypothesis- design of experiment: variables, correlation and causality, sampling, use of controls, experimental bias, analysis, results, discussion of results, models., statistical analysis of experimental data using computers, mean, mode, deviation, standard deviation, plotting graph using spread sheet, preparation of seminar papers, project etc. using computers. Background Reading - Selected Internet Resources in chemistry –Major Publishers in Chemical science, Author, Citation, Computer Searching, Reviews, Keywords

Module VI Introduction to Cheminformatics 6 Hrs

Basics of cheminformatics, applications of cheminformatics, storage & retrieval, file formats – MOL, SDF, CML, PDB formats, SYBYL Line Notation, SMILES of simple molecules like methane, ethyl alcohol, benzene cyclohexane etc. Structure drawing, spread sheet and chemistry related softwares. Molecular visualization tools. Chemical Databases, Chemical Safety - Toxicology Information - material safety data sheets
Reference

3. Alexis Leon & Mathews Leon, Computers Today, Leon Vikas
4. Soti Sivendra Chantha Contemporary Science Teaching,
8. Calvin W Tayler and Frank Barron Scientific Creativity : Its Recognition and Development,
9. Louise Cohen, Lawrence Manion & Keith Morrison A Guide to Teaching Practice,
10. Encyclopaedia of Modern Methods of Teaching and Learning, Edited V K Rao
11. Haseen Taj Current Challenges in Education,
12. Radha Mohan Research Methods in Education,
13. R T Mishra Teaching of information Technology,
14. M Ravikumar Information Technology for Higher Education,
15. Kolasani Sunil Kumar, K Ramakrishna and Digumarti Bhaskara Rao Methods of Teaching Chemistry,
18. Andrew R. Leach and V.J. Gillet An Introduction to Chemoinformatics
20. http://www.vlab.co.in
21. http://nptel.iitm.ac.in/
I 1. Test data are most validly used in
 (a) Determining grades
 (b) Evaluating the effectiveness of instruction
 (c) Diagnosing pupil difficulty
 (d) Orienting instruction and expectations at the level of the child

2. Which among the following is a law?
 (a) $F = ma$
 (b) $P \alpha \frac{1}{\sqrt{V}}$
 (c) $dq = du + Pdv$
 (d) $V \alpha T$

3. Which among the following is the most fundamental characteristic of science?
 (a) formation of hypothesis
 (b) measurement
 (c) reproducibility of the measurement
 (d) experiment

4. Scientific creativity originate from
 (a) imagination
 (b) knowledge
 (c) various skills
 (d) experiments

II 5. A provisional supposition made in order to explain scientifically some fact or
 phenomenon is called ________

6. ________ is not a process skill in Science.

7. The one which represents deduction is ________

8. Father of modern chemistry is ________

III. 9. ________ synthesized urea in the laboratory from inorganic compounds for the first
 time

10. Warrantee is ________

11. The SMILES of benzene is ________

12. NPTEL in short is ________

IV 13. One application of computer in medicine is ________

14. INFLIBNET is used in ________

15. Plagiarism is ________

16. Internet is ________

Section B, Weightage 1
Answer any 8 from the following. Each answer must contain 4 points.

17. Name any four major journals in Chemistry.

18. Distinguish between accuracy and precision with suitable examples.

19. Prepare a format for the documentation of the experiment to determine the hardness
 of a sample of water.

20. What are the basic components of the product of science?

21. Name four chemistry related softwares?

22. What are the major contributions of Marie Sklodowska-Curie?

23. What is a chemical database?
24. Explain basic concepts of IPR?
25. Explain standard deviation?
26. Explain enquiry vs discovery approach.
27. What are the features of modern personal computer?
28. Rutherford’s gold foil experiment is a milestone in the history of science. Comment

Section C, Weightage 2
Answer any 5 from the following. Each answer must contain 8 points.
29. What is meant by revision of scientific theories and laws?
30. Explain documentation of experiments.
31. What is open access initiation?
32. Explain the applications of cheminformatics
33. Explain copy right and patents.
34. Highlight the major roles played by chemistry in everyday life?
35. Exemplify the use of a pi-diagram in presenting the results of a typical experiment
36. Discuss the internet resources available for virtual learning

Section D, Weightage 4
Answer any two from the following.
37. Explain the various types of a) file formats b) databases used in cheminformatics?
38. Explain primary, secondary and digital sources
39. Explain the various components essential for preparing a research article in chemistry.

PART B. LABORATORY

Computer Laboratory
[No ESA for this component]
Module-1 Chemical Bonding –I

Covalent bond-valence bond theory and its limitations- hybridization -
hybridization in methane, ethylene, benzene, acetylene - VSEPR theory and its
applications- structure of XeF₂, XeF₄, XeF₆, CIF₃, IF₅, IF₇, NH₃,H₃O⁺, SF₄ & H₂O

MO theory, LCAO of H₂⁺ ion, homonuclear diatomic molecules- C₂, B₂, N₂, O₂
and ions like O₂⁺- heteronuclear diatomic molecules (HF, NO, and CO) – Bond order -
comparison of VB and MO theories

Module II : Chemical Bonding –II

Ionic bond-ionic lattice energy of ionic compounds- Bond-Lande equation, Born-
Haber cycle, solvation energy and solubility of ionic solids-covalent character of ionic
bond, Fajan’s rules

Polarity of Covalent bond- dipole moment- percentage ionic character- dipole
moment and molecular structure

Metallic bonding- free energy theory, VB theory and band theory(Qualitative
treatment only)- weak electrical forces – hydrogen bond, inter and intramolecular
hydrogen bond, intermolecular interaction – induction forces and dispersion forces such
as van der Waals forces, ion –dipole, dipole-dipole, ion-induced dipole, dipole-induced
dipole, induced dipole-induced dipole interactions

Module III : Nuclear Chemistry

Natural radioactivity, modes of decay, Geiger –Nuttal rule, artificial
transmutation and artificial radioactivity- nuclear stability, n/p ratio, mass defect and
binding energy, nuclear fission and nuclear fusion, elementary idea of subatomic
particles like neutrino, anti neutrino etc-applications of radioactivity- ¹⁴C dating, rock
dating , neutron activation analysis and isotope as tracers

Module IV : Non Aqueous Solvents

General properties- classification- self ionization and leveling effect- reaction in
non-aqueous solvents- protic and aprotic non aqueous solvents- examples- solutions of
metals in liquid ammonia- self ionization of liquid ammonia- liquid SO₂, liquid HF,
alkali metals in liquid ammonia

Module V: Instrumental Methods of Analysis

Atomic absorption spectroscopy- flame emission spectroscopy- applications –
colorimetry- spectrophotometry- laws of spectrophotometry- Beer- Lambert’s law-
applications of spectrophotometry- thermal methods- introduction to TG, DTA and DSC-
instrumentations and applications. Tools for measuring nanostructures (Elementary idea
only): XRD, Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy(STM),
Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM)
Module VI: Chemistry of Nanomaterials

Evolution of Nanoscience – Historical aspects- Preparations containing nano gold in traditional medicine. Lycurgus cup- Faraday’s divided metal etc. Nanosystems in nature. Preparation of nanoparticles: Top-down approaches and Bottom to top approach Sol–gel synthesis, Colloidal precipitation, Co–precipitation, Combustion technique, Sonochemistry, Hydrothermal technique, High energy ball milling etc. Carbon nanotubes and fullerenes. Properties of nanoparticles: optical, magnetic, mechanical, thermal and catalytic properties with examples.

Reference:

2. “Concise Inorganic Chemistry” : J. D. Lee, ELBS
3. “Theoretical Inorganic Chemistry” : M. C. Day and Selbin
5. “Essentials of Nuclear Chemistry” : H. S. Arniker
6. “Non-aqueous Solvents” : Sisler
7. “Fundamentals of Inorganic Chemistry” : E. S. Gilreath
8. “Instrumental Methods of Analysis” : Willard, Merrit
9. “Inorganic Chemistry” : Shriver and Atkins
10. “Coordination Chemistry” : Bosolo and Johnson
11. “Coordination Chemistry” : S. F. A. Kettle
Section A, Weightage 0.25 eah (Answer in one word/sentence)
Answer all questions

1. Example of a weak acid is __________.
2. Conjugate base of HF is ____________.
3. The isotope for carbon dating is _____________.
4. Hydrogen bonding in salicyaldehyde is _______molecular.

II. 5. The hybridization of chlorine in ClF₃ is __________
6. Write n/p ratio of stable nuclei.
7. Name a naturally occurring radioactive element.
8. Name a radioactive element used in cancer treatment.

III. 9. Water is an example for _______solvent.
10. The bond order of O₂⁺ is _________.
11. An aprotic non-aqueous solvent is _________.
12. Beer- Lambert’s law is mathematically expressed as ________.

IV. 13. Expansion for TEM is -----------.
14. Frequency of sound waves used in sonochemistry is ________.
15. C-60 is known as--------------.
16. Faraday prepared _______sols as the divided metal. 0.25×16 = 4

Section B. Weightage 1 each (Short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.
17. Explain Lowry- Bronsted theory of acids and bases.
18. What is dipole moment ?
19. What is SHAB principle?.
20. What is Geiger –Nuttal rule.
21. Explain with example artificial transmutation.
22. Define binding energy.
23. Write a note on protic and aprotic solvents.
24. Write a method for preparing Ag nano particle.
25. What is flame emission spectroscopy.
26. Ortho nitro phenol is more volatile than para nitro phenol. Why ?
27. Explain sol- gel synthesis.
28. Explain the principle of hollow cathode lamp.

1×8 = 8

Section C, Weightage 2 each (Short essay type)
Answer any five questions from the following. Each answer must contain 8 points.
29. Explain different theories of metallic bonding.
30. Distinguish between levelling solvents and differentiating solvents
31. Discuss the structure and bonding in benzene.
32. What is van der waal’s force. Explain the different types of interactions.
33. How will you prepare a nano system using hydrothermal technique.
34. Write notes on various instrumental tools used for analysing nanostructures.
35. Using TG data explain the decomposition of CaC₂O₄·H₂O.
36. A freshly cut piece of wood gives 16100 counts of β-ray emission per minute per kg and an old wooden bowl gives 13200 counts per minute per kg. Calculate the age of the wooden bowl. The half-life period of carbon is 5568 years.

\[2 \times 5 = 10 \]

Section D, Weightage 4 each (Long essay type)

Answer any two questions.

37. Using suitable examples illustrate how thermoanalytical technique DTA is complementary to DSC.
38. Give a comparative account of VB and MO theories using relevant examples.
39 Write a note on a) liquid ammonia b) liquid HF as non-aqueous solvents. \[4 \times 2 = 8 \]
Aim of the Course: The syllabus includes introduction to hybridization, mechanism of reactions, aromaticity and the chemistry of aliphatic and aromatic substituted compounds. The course also describes the stereochemistry of organic compounds.

Objective of the Course: It imparts the behaviour of aliphatic and aromatic compounds and introduces the concept of reaction mechanism. By studying this topics the students get an idea of the mechanism of reactions of organic compounds and stereochemical aspects.

Module I: Introduction to Organic Reaction Mechanism I (9 Hrs)

Module II: Reaction mechanism II (9 Hrs)

Module III: Arenes & Aromaticity (9 Hrs)
Module IV: Organic reagents and organometallic compounds
(9Hrs)
Acetoacetic ester-synthesis and tautomeric application of Acetoacetic ester, Synthesis and synthetic application of Diethylmalonate. Grignard reagents, organic zinc reagents, Reformatsky reaction.

Module V: Stereochemistry-I

Module VI: Stereochemistry-II
Optical activity in compounds not containing asymmetric carbon atoms- Biphenyls, allenes Geometrical isomerism - cis-trans, syn-anti and E-Z notations - geometrical isomerism in maleic and fumaric acids and unsymmetrical ketoximes - methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration and cyclisation Conformational analysis - introduction of terms - conformers, configuration, dihedral angle, torsional strain - Conformational analysis of ethane and n-butane including energy diagrams - conformers of cyclohexane (chair, boat and skew boat forms) - axial and equatorial, Bonds-ring flipping showing axial equatorial interconversions, conformation of methyl cyclohexane.

References
10. Arun Parikh, Hansa Parikh, Khyati Parikh, “Name Reactions in Organic Synthesis”.
Section-A, Weightage 1

Answer all questions. Answer in one word/sentence.

I. 1. The type of reaction involved in the reaction of bromine with ethene is_________.
2. The electrophile in the nitration of benzene is____________.
3. The intermediate in the S_N1 mechanism is____________.
4. A reagent used for cis hydroxylation of alkene is____________.

II. 5. Which catalyst used for Friedel Crafts acylation?
6. Name of a non benzenoid aromatic compound.
7. What is the general formula of Grignard reagent.
8. Ethylacetoacetate is prepared from ethyl acetate by ______ reaction.

III. 9. Which isomer of naproxen has more analgesic action.
10. Cis-but-2-ene and Trans-but-2-ene are _______ type of isomers.
11. An organic reaction which condenses aldehydes (or ketones), with α-halo esters, using metallic zinc to form β-hydroxy-esters is called ______.
12. Write an example of non-benzenoid aromatic compound.

IV. 13. Complete the equation RCOCl------------- → __________
14. Complete the equation C_6H_6 + C_6H_5 CH_2Cl------------------
100°C →
15. Identify X Glycerol + Oxalic acid --------------------------- → X
16. Phenol __ CHCl_3+KOH __________ →

Section – B (Short answer type)

Answer any 8 questions, Weightage- 1

17. Indicate the type of hybridization of carbon atom in the following compounds.
 (a) CH_3Br (b) CH_3OH (c) HCN (d) HCHO
18. Phenol is acidic while ethanol is not. Why?
19. Arrange the following in the increasing order of stability.
 (CH_3)_2CH^+, CH_3^+, (C_6H_5)_2CH^+, C_6H_5-CH_2^+
20. Give an example and state Hofmann’s rule.
21. What is Kharasch effect? Illustrate with an example.
22. When toluene is nitrated the major products are ortho and para substituted products. Why?
23. Write briefly the mechanism of nitration of benzene.
24. Define Huckel’s rule.
25. Predict the products obtained on the nitration of
 (1) 1,2-dibromo benzene (2) 1,3-dibromo benzene
26. Distinguish between aldehydes and ketones.
27. How will you convert ethylene to ethylene glycol?
28. Write a note on aldol condensation.

Section C (Short essay type)
Answer any 5 questions. Weightage-2

30. Halogens are electron withdrawing yet they direct the incoming electrophile to
ortho-para positions. Why?
31. Compare SN1 reaction rates and SN2 reaction rates of methyl, ethyl, iso-propyl
and t-butyl halides.
32. Write briefly on the mechanism and orientation of aromatic nucleophilic
substitution reactions proceeding through benzyne intermediates.
33. Give a detailed account of the role of group already present in the aryl ring in
directing the incoming group in an electrophilic substitution reaction.
34. Discuss the molecular orbital structure of Benzene.
35. Discuss the mechanism of addition polymerization initiated by free radicals.
36. Write a note on aromatic electrophilic substitution.

Section –D (Long essay type)
Answer two questions. Weightage-4

37. (a) How is vanillin prepared? What are its uses?
(b) Write a note on absolute alcohol and power alcohol.
(c) What are the products formed on nitration of the following compounds.
 Phenol, chlorobenzene, nitrobenzene and benzoic acid.
(d) Write a note on Wolf- Kishner reduction and Clemmenson reduction.
38. Give a detailed account of the generation, structure and stability of free
 radicals, carbanions and singlet and triplet carbenes.
39. Explain the mechanism of E\textsubscript{1} and E\textsubscript{2} eliminations.
Aim: This course is an introduction to different states of matter and provide a firm foundation for understanding the physical principles that govern chemical systems. The course also describes the principles of chemical thermodynamics and group theory.

Objectives: Students, upon completion of this course, will gain exposure and practice in the areas of physical chemistry which include gas and liquid properties, thermodynamics, and group theory. The laws of thermodynamics form the appropriate organizational tool to understand the chemistry of bulk systems.

Module I – Gaseous state

Ideal gas equation, Behaviour of real gases, Deviation from ideal behaviour, Compressibility factor, Boyle temperature - van der Waal’s equation of state – derivation and importance, Virial equation of state, Collision frequency, Collision number, Collision diameter and mean free path

Types of molecular velocities and their inter relations, Maxwell Boltzmann distribution of molecular velocities, Statement of equation and explanation (No derivation), Effect of temperature on most probable velocity, Derivation of root mean square, most probable and average velocities from the equation.

Critical phenomena: Isotherms of CO₂, continuity of states, Critical constants and their experimental determination, relation between critical constants and van der Waals constants.

Module II – Solid state

Isotropy and anisotropy, Space lattice and unit cell, Elements of symmetry of crystals, Bravais lattices, Crystal systems, Laws of crystallography, Miller indices, Representation of lattice planes of cubic crystals, Determination of Avogadro number from crystallographic data, X-ray diffraction studies of crystals, Bragg’s equation – derivation and applications, Rotating crystal and powder method, Structure of NaCl and KCl Rutile, Zinc blend, Wurtzite, radius ratio effect and coordination number, limitations of Radius ratio rule-Imperfections in crystals, point defects – Schottky and Frenkel defects, Non-stoichiometric defects.

Module III – Liquid state and Dilute solutions

Properties of liquids: Surface tension and its measurement by capillary rise and stalagmometer method, factors affecting Surface tension, Viscosity, Poisuelle’s equation, Determination of viscosity by Ostwald’s viscometer, Refractive index and its determination by Abbe refractometer.

Dilute solutions: Molarity, Molality, Normality and Mole fraction. Colligative properties, Thermodynamic derivation of \(\Delta T_b = K_b \times m \) and \(\Delta T_f = K_f \times m \), Osmotic pressure, van’t Hoff equation and molecular mass, Isotonic solutions, Determination of molecular mass of solutes by Beckmann’s method, Rast’s method and cooling curve
method. Abnormal molecular mass, van’t Hoff factor, Determination of degree of
dissociation and association.

Module IV – Thermodynamics I

Basic concepts- system, surroundings, types of systems. Extensive and intensive
properties, macroscopic properties. State functions and path functions. Types of
Processes, Zeroth law of thermodynamics

Definition of internal energy and enthalpy. Heat capacities at constant volume
(Cv) and at constant pressure (Cp), relationship between Cp and Cv. Mathematical
statement of first law. Reversible process and maximum work. Calculation of work, heat,
internal energy change and enthalpy change for the expansion of an ideal gas under
reversible isothermal and adiabatic condition.

The Joule-Thomson effect – derivation of the expression for Joule-Thomson
coefficient. Sign and magnitude of Joule-Thomson coefficient, inversion temperature.

Thermochemistry – standard states. Enthalpies of formation, combustion and
neutralization. Integral and differential enthalpies of solution. Hess’s law and its
applications. Kirchoff’s equation.

Module V – Thermodynamics II

Need for IInd law. Different statements of IInd law, Thermodynamic scale of
temperature. Carnot cycle and its efficiency, carnot theorem.

Concept of entropy- Definition and physical significance. Entropy as a function
of volume and temperature, Entropy as a function of pressure and temperature. Entropy
as a criteria of spontaneity and equilibrium.

Gibbs and Helmholtz free energies and their significances- criteria of equilibrium
and spontaneity. Gibbs-Helmholtz equation, dependence of Gibbs free energy change on
temperature, volume and pressure. Maxwell’s relations. Partial molar quantities-
Chemical potential-Gibbs-Duhem equation. Concept of fugacity, determination of
fugacity by graphical method.

Module VI – Group theory & Liquid crystals

Group theory: Elements of symmetry – Proper and improper axis of symmetry,
plane of symmetry, centre of symmetry and identity element. Combination of symmetry
elements, Point groups, C_2V, C_3V and D_3h, Group multiplication table of C_2V,
Determination of point groups of simple molecules like H_2O, NH_3 and BF_3.

Liquid crystals: Types of liquid crystals – smectic, nematic and cholesteric,
Swarm theory of liquid crystals, uses of liquid crystals.

(At least 100 problems are to be worked out from all units together. 30% of the
questions for Examination shall contain problems.)

References
1. P W Atkins, “Physical Chemistry”, Oxford University Press
4. F Daniels and R A Alberty, “Physical Chemistry”, Wiley Eastern
5. E A Moelwyn Hughes, “ Physical Chemistry”, Pergamon Press
 Edition, Vishal Publishing Co
14. A. Salahuddin Kunju and G. Krishnan “Group Theory and its Applications in Chemistry”
I. 1. The average speed of a certain gas at 27°C is 400ms⁻¹. The temperature at which the speed will be 800ms⁻¹ is________
2. NH₃ belongs to________ point group.
3. The temperature at which the second virial coefficient of a real gas is zero is called________
4. The van der Waal’s equation for n moles of a gas is________

II. 5. Total number of Bravais lattices in a crystal is________
6. NaCl has F.C.C. structure. The number of Na⁺ and Cl⁻ ions in the unit cell is________
7. Efficiency of Carnot engine working between temperatures T₁ and T₂ is________
8. The total number of space groups in a crystal is________

III. 9. The unit of surface tension of a liquid is________
10. Give an example of a liquid crystalline substance.
11. Isotonic solutions must have the same________
12. The van’t Hoff equation for osmotic pressure of a dilute solution is________

IV 13. Work done in a reversible process is________
14. Gibb’s free energy relation is________
15. The temperature at which the Joule-Thomson coefficient changes sign is known as________
16. For a cyclic process ΔE =________

Section B. Weightage-1 each (short answer type)
Answer any 8 from the following. Each answer must contain 4 points.
17. What is the law of rationality of indices?
18. What is Poisuellie’s equation?
19. Explain van’t Hoff factor
20. Explain first law of thermodynamics.
21. Derive the expression for Joule Thomson coefficient
22. Explain any two statements of second law of thermodynamics.
23. Explain the physical significance of entropy
24. What are the proper and improper axes of symmetry?
25. Draw the group multiplication table of C₂ᵥ point group
26. Define the terms collision frequency and collision number.
27. Explain virial equation of state.

Section C. Weightage 2 each (short essay type)
(Answer any 5 from the following) Each answer must contain 8 points.
29. Derive root mean square velocity and average velocity from Maxwell- Boltzmann equation.
An aqueous solution containing 0.25 g of a solute dissolved in 20 g of water froze at – 0.42 °C. Calculate the molar mass of the solute. Molar heat of fusion of ice at 0°C is 6.025 KJ and R = 8.314 JK⁻¹mol⁻¹.

What are Rast’s method and cooling curve method of determining molar mass?

Explain Hess’s law and its applications

Explain Gibbs - Helmholtz equation and its significance

Explain Swarm theory of liquid crystals. Mention two applications of liquid crystals.

What is chemical potential and derive Gibbs Duhem equation?

How will you experimentally determine the critical constants of a gas?

Section D. Weightage-4 each (long essay type)

(Answer any two from the following)

Explain Linde’s and Claude’s method of liquefaction of gases.

Derive Bragg’s equation. The density of LiF is 2.601 g cm⁻³. The (111) first order reflection in the X-ray diffraction from LiF occurs at 8 44 °, when X-rays of wavelength 70.8pm are used. If there are four LiF molecules per unit cell, calculate Avogadro number.

What is Kirchoff’s equation? The enthalpy of reaction for the formation of ammonia according to reaction N₂ + 3H₂ → 2NH₃ at 25 °C was found to be -91.94 kJ mol⁻¹. What will be the enthalpy of reaction at 50 °C ? The molar heat capacities at constant pressure and at 27°C for Nitrogen, Hydrogen, Ammonia are 28.45, 28.32 and 37.07 joules mol⁻¹ respectively.
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME
Core Course No. - VI Course Code– CH1542
Semester – V Credit-4
Inorganic Chemistry III
(2013 admission onwards)

72 hrs

Aim
To improve the level of understanding of the chemistry of transition, non-transition and inner transition metals, coordination compounds, organometallic compounds, metal carbonyls and bioinorganic chemistry.

Objectives
Students, upon completion of this course, will gain exposure in the areas of the chemistry of d and f block elements. They will get an overview of the various theories of coordination compounds and isomerism in metal complexes. Another objective is to impart the student the classification, properties and applications of organometallic compounds and to make the student understand the role of metals in biological systems.

Module I Transition and inner transition elements (18 hrs)
(a) Transition elements: Electronic configuration and general characteristics - Comparison of 3d, 4d and 5d transition series – Colour, catalytic activities and spectral properties with reference to d¹ to d¹⁰ systems. Preparation, properties and uses of K₂Cr₂O₇, KMnO₄ and TiCl₄.
(b) Lanthanides and actinides: Lanthanides - electronic configuration and general properties – Occurrence and isolation of lanthanides from monazite – Lanthanide contraction – Magnetic properties and complexation behaviour.
 Actinides – Oxidation states, ionic radii, colour, complex formation in comparison with lanthanides.

Module II Coordination Chemistry (18 hrs)

Module III Organometallic Compounds and Bioinorganic Chemistry (18hrs)

Bioinorganic Chemistry: Role of metal ions in biological systems – Biochemistry of iron, haemoglobin and myoglobin (elementary idea of the structure and
mechanisms of their actions) – Photosynthesis – Sodium-Potassium pump - Biochemistry of magnesium and calcium (brief study only)

Module IV Compounds of non-transition elements
(18 hrs)

Manufacture and uses of the following Glass – different types of glasses, Silicates, Zeolites and Silicones.

References:

1. Advanced Inorganic Chemistry : Cotton and Wilkinson
2. Inorganic Chemistry : J.E. Huheey
3. Inorganic Chemistry : Shriver and Atkins
4. Concise inorganic Chemistry : J.D.Lee
5. Coordination Chemistry : Bosolo and Johnson
6. Coordination Chemistry : S. F. A. Kettle
7. Bio inorganic Chemistry : M.N. Hughes
8. Organometallic chemistry : R. C. Mehrothra and A. Singh
University of Kerala
Model Question Paper of B.Sc. Chemistry Programme
2013 onwards
Semester – V Core Course No. - VI Course Code– CH1542
Inorganic Chemistry III

Time: Three Hours Maximum Weightage : 30

Section A, Weightage 0.25 each (answer in a word/sentence)
Answer all questions

I. 1. Which is more basic; La(OH)₃ or Lu(OH)₃?
2. Give the general outer electronic configuration of a transition element.
3. Which is the catalyst used in the oxidation of SO₂ to SO₃ in contact process?
4. Name the element obtained by the bombardment of ²³⁸U with an α particle.
II. 5. What is the coordination number of Ag in [Ag(CN)₂]⁻?
6. Give the IUPAC name of Na₃[Co(CO₃)₃].
7. What is the unit of magnetic moment?
8. Give the example for a tridentate ligand.
III. 9. Write the structure of ferrocene.
10. Give the formula of a metal carbonyl which does not obey 18-electron rule.
11. Name the metal ion, other than magnesium, involved in photosynthesis.
12. Name a protein, containing calcium.
IV. 13. Give an example of phosphorus based polymer.
14. What is ‘inorganic graphite’?
15. What is the oxidation number of P in H₃PO₄?
16. Give the formula of a methanide.

Section B (short answer type)
(Answer any 8 questions from the following. Each answer must contain 4 points.
Weightage 1 each)

17. Transition metals are less reactive than the alkali and alkaline earth metals - Justify.
18. Which is more stable: Cu²⁺ or Cu⁺ in aqueous solution? Substantiate your answer.
19. Which has got greater tendency to form complexes; lanthanides or actinides? Give reasons.
20. What is chelate effect?
21. What is an ambidentate ligand? Give example.
22. Explain geometrical isomerism in metal complexes with suitable example.
23. What is Ziese’s salt? Give its structure.
24. State and explain 18-electron rule.
25. How haemoglobin differ from myoglobin.
26. What are carboranes?
27. What are zeolites? Mention their uses.
28. What happens when orthophosphoric acid is heated?

Section C (Short essay type)
(Answer any 5 questions from the following. Each answer must contain 8 points.
Weightage 2)

29. Starting from pyrolusite, how KMnO₄ is prepared?
30. What is lanthanide contraction? Explain its consequences.
31. What are the factors that affect stability of metal complexes?
32. Give an account of the applications of coordination compounds in quantitative and qualitative analysis.
33. Discuss the nature of bonding in metal carbonyls.
34. Give an account of sodium-potassium pump in biological systems.
35. How silicones are prepared? Discuss their structure and uses.
36. Compare the properties of borazole with those of benzene.

Section D (long essay type)
(Answer any 2 questions from the following. Weightage 4 each)
37. Describe the ion exchange method for the separation of lanthanides from monazite. Comment on the magnetic properties of lanthanides.
38. Describe the splitting of d-orbitals in tetrahedral and octahedral fields according to crystal field theory.
39. Give an account of the preparation, properties, structure and bonding of noble gas compounds.

\[2 \times 5 = 10\]
\[4 \times 2 = 8\]
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME

Core Course No. - VII Course Code– CH1543
Semester – V Credit-4
Physical Chemistry II
(2013 admission onwards)

Aim of the course: To learn statistical mechanics which explains the chemical and physical properties and dynamics in the thermodynamic limit from a knowledge of the microscopic properties of the constituent atoms and molecules of a bulk system. The concepts of quantum mechanics and spectroscopy which provide a complete description of chemistry at the microscopic level, form the basis for the course.

Objectives: Students will explain and apply the concepts of thermodynamics, quantum mechanics, and spectroscopy to chemical, physical, and biochemical systems. Students will be able to derive essential mathematical relationships in thermodynamics, quantum mechanics, and spectroscopy. Students will evaluate physical and chemical systems by non-spectroscopic techniques.

Module I – Thermodynamics III & Statistical thermodynamics
12 hrs
Nernst heat theorem, proof and its consequences. Statement of IIIrd law-Plank’s statement, Lewis Randall statement. Concept of perfect crystal, evaluation of absolute entropies of solid, liquid and gas. Exception to IIIrd law with reference to examples- CO, NO, N₂O and H₂O.
Phase space, system, assembly and ensemble-types of ensembles and uses. Thermodynamic probability, Boltzmann distribution law (no derivation). Partition function, entropy and probability. Thermodynamic functions in terms of partition functions - internal energy, enthalpy, pressure, work function and free energy function.

Module II – Colloids and Adsorption
12 hrs

Module III – Quantum mechanics
12 hrs
Radiation phenomena- blackbody radiation, photoelectric effect, Compton effect and atomic spectra. Plank’s quantum theory and explanation of the radiation phenomena.
Schrodinger wave equation – significance of Ψ, well behaved functions, Concept of operators and some operators of interest (properties of operators not required), Postulates of quantum mechanics
Application of quantum mechanics to simple systems- particle in 1 D box, normalization of wave function, Particle in 3 D box. Concept of degeneracy. Application
to hydrogen atom (no derivation) Schrodinger wave equation in Cartesian and spherical polar co-ordinates, Quantum numbers.

Module IV – Spectroscopy – I
12 hrs

Regions of electromagnetic spectrum. Different units of energy (erg, joule, calorie, cm$^{-1}$, Hz, Å and eV) and their inter conversions. Interaction of radiations with matter. Various types of molecular spectra. Born-Oppenheimer approximation. Rotational spectroscopy: microwave spectra of diatomic molecules, energy expression, selection rule, rotational energy levels, determination of bond length, effect of isotopic substitution.

Raman spectroscopy: Stoke's and antistoke's lines and their intensity difference, rotational Raman spectrum. Selection rule. Frequency of separation, vibrational Raman spectrum, Mutual exclusion principle.

Module V – Spectroscopy – II
12 hrs

Electronic spectroscopy: Frank-Condon principle. Singlet and triplet states dissociation and pre-dissociation. Electronic spectra and diatomic molecules. Dissociation energy, electronic spectra of polyatomic molecules (qualitative idea only).

Module VI – Non-spectroscopic methods
12 hrs

Non-spectroscopic methods: Dipole moment, Debye equation and Clausius-Mosotti equation, measurement of dipole moment by temperature method, Dopole moment and molecular structure, Diamagnetism and paramagnetism, Magnetic susceptibility and unpaired electrons, measurement of magnetic susceptibility, Molar refraction and molecular structure, Atomic refraction, Optical exaltation, Parachor and atomic equivalent of parachor.

At least 100 problems are to be worked out from all units together. 30% of the questions for Examination shall contain problems.

References

1. P W Atkins, “Physical Chemistry”, Oxford University Press
8. L K Nash, “Elements of Statistical Thermodynamics”, Addison Wesley
University of Kerala
Model Question Paper of B.Sc. Chemistry Programme
2013 onwards
Semester – V Core Course No. - VII Course Code– CH1543
Physical Chemistry II

Time: Three Hours Maximum Weightage : 30
Section A , weightage 0.25 each (answer in one word\sentence)
(Answer all questions)

I. 1. The migration of colloidal particles under the influence of an electric field is called

2. Entropy of CO at absolute zero is ________
3. The blue colour of water in the sea is due to ________
4. Entropy related to probability as ________

II. 5. The Heisenberg uncertainty principle can be stated by the equation ________
6. The Laplacian operator is defined by?^2= ________
7. Which of the following will give pure rotational spectrum? H$_2$, N$_2$, CO$_2$, HCl.
8. The minimum frequency of incident light needed to eject electrons from the surface of the metal is called ________

III. 9. Schrodinger wave equation is ________
10. Give the expression for Freundlich adsorption isotherm.
11. The compound used as standard in nmr spectroscopy is __________
12. Give the relation between character and surface tension of a liquid.

IV. 13. Free radicals are identified using __________ spectroscopy.
14. STM is ___________
15. __________ is the unit of dipole moment.
16. The selection rule for rotational spectroscopy is ________ 0.25×16 = 4

Section B, weightage-1 each (short answer type)
Answer any 8 questions from the following. Each answer must contain 4 points.

17. What is sedimentation?
18. Explain blackbody radiation
19. What are the postulates of quantum mechanics?
20. What is energy expression for vibrational spectrum? Explain the terms
22. Explain chemical shift
23. What is hyperfine splitting in esr?
24. What are the applications of mass spectrometry?
25. How is magnetic susceptibility measured?
26. What is zeta potential ?
27. Calculate the number of fundamental modes of vibrations of CO$_2$ and SO$_2$ molecules.
28. How does stokes and anti stokes lines originate in Raman spectrum. 1×8 = 8

Section C, Weightage 2 each (Short essay type)
Answer any 5 from the following. Each answer must contain 8 points.

29. What is an ensemble, explain the different types of ensembles.
30. Explain Frank-Condon principle.
31. Apply quantum mechanics to particle in a one dimensional box.
32. Explain mutual exclusion rule with examples.
33. Explain the spin-spin coupling and high resolution spectra in nmr with an example.
34. What is Debye equation? Explain its significance.
35. What are the consequences of unharmonicity in vibrational spectroscopy?
36. The fundamental vibrational frequency of carbon monoxide molecule is 2170 cm\(^{-1}\)
 Calculate the force constant of the molecule. \(2 \times 5 = 10\)

Section D, Weightage-4 each (Long essay type)

Answer any two from the following

37. What are thermodynamic functions in terms of partition functions?
38. Derive Langmuir adsorption isotherm and explain the determination of surface area of a solid by it.
39. How is bond length determined by rotational spectroscopy?
 The pure rotational spectrum of a gaseous molecule CN consists of a series of equally spaced lines separated by 3.7978 cm\(^{-1}\). Calculate the internuclear distance of the molecule. The molar masses are; \(^{12}\)C=12.011 and \(^{14}\)N=14.007 g mol\(^{-1}\)
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME
Core Course No. - X Course Code– CH1641
Semester – VI Credit–4
Organic Chemistry II
(2013 admission onwards)

Lecture - Tutorial- Lab : 3-0-2

Aim of the Course : The syllabus deals with organic compounds like alcohols, aldehydes ketones, ethers, acids, carbohydrates, aminoacids, proteins, nucleic acids, oils, fats, detergents, vitamins, terpenes, alkaloids, hormones and enzymes and their properties

Objective of the Course : The students will get an interesting idea about the preparation and properties mechanism of reactions of many organic conversions s and of organic compound

Module I Alcohols, Ethers and Phenols
Preparation and properties, Zeisels method, Brief study of crown ethers and epoxides
Monohydric alcohols: Classification, physical properties–hydrogen bonding-distinction between primary, secondary and tertiary alcohols- Ascent and decent in alcohol series
Dihydric alcohols: Oxidative cleavage – Lead tetra acetate, Periodic acid- Pinacol - Pinacolone rearrangement –mechanism,
Phenols – Acidity of phenols- effects of substituents – comparison of acidity with alcohols, Preparation and uses of nitrophenols, picric acid, catechol, resorcinol and quinol Mechanisms of Reimer –Tiemann reaction, , Fries rearrangement

Module II Aldehydes and Ketones
Structure and reactivity of the carbonyl group - acidity of alpha hydrogen.
Comparative studies of -aldehydes and ketones,Reimer-Tiemann(mechanism) - aliphatic and aromatic aldehydes - formaldehyde and acetaldehyde-Mechanism of nucleophilic additions to carbonyl groups with mechanism on Claisen , Benzoin, Aldol, Perkin and Knoevenagel condensations. Condensation with ammonia and its derivatives. Wittig reaction(mechanism). Mannich reaction.-Addition of Grignard reagents. Oxidation and reduction of aldehydes and ketones - Baeyer-Villiger oxidation-Cannizzaro’s reaction(mechanism), Meerwein-Pondorof Verley reduction, Clemmensen, Wolff-Kishner, LiAlH4 and NaBH4 reductions (mechanisms expected) .Use of acetal as protecting group, Beckmann rearrangement(mechanism)

Module III Ethers, Carboxylic acids and their derivatives
Carboxylic acids and their derivatives: - Preparation and properties of aliphatic and aromatic carboxylic acids. Ascent and descent series in aliphatic carboxylic acids. Effect of substituents on acidity of aliphatic and aromatic carboxylic acids. Preparation, properties and uses of anthranilic acid, cinnamic acid, lactic acid, salicylic acid, adipic acid, acid anhydrides, amides, esters, coumarin, malic acid, tartaric acid and citric acid.

Module IV Carbohydrates
Classification and Nomenclature of monosaccharides. Configuration of monosaccharides. Preparation, properties and structural elucidation of glucose, fructose

Module V Amino acids, Proteins and Nucleic acids (9 hrs)

Module VI Oils, Fats, Detergents, Alkaloids, Vitamins and Terpenes (9 hrs)

References

1 Morrison &Boyd,“Organic Chemistry”.
2 F. Carey, McGrawHill,“Organic Chemistry”.
5 P.Y. Bruice,“Organic Chemistry”.
7 Jerry March,”Advanced Organic Chemistry”.
11 Tewari, Mehrotra,“ A text book of Organic Chemistry”.
12 M.K. Jain ,“Principles of Organic Chemistry”.
15 Arun Parikh, Hansa Parikh, KhyatiParikh ,“Name Reactions in Organic Synthesis”.
University of Kerala
Model Question Paper of B.Sc. Chemistry Programme
2013 onwards
Semester – VI Core Course No. - X Course Code– CH1641
Organic Chemistry II
Time: Three Hours
Maximum Weightage : 30

Section A, Weightage 1(answer in a word|sentence)
Answer all questions

I 1. What is the product formed when alkyl halide is treated with sodium ethoxide?
2. The reagent used for the oxidative cleavage of 1,2-diols is____________
3. In Victor Meyer’s test blue colour is shown by __________ alcohol.
4. Write the product formed when acetic acid is treated with Cl2 in presence of red phosphorous.

II 5. In Gattermann’s reaction, which is used as the catalyst ______.
6. What is chemical name of Urotropin.
7. What is picric acid?
8. What is the structure of Carbobenzyloxy Chloride.

III 9. The specific rotation of β D glucose is __________
10. Sucrose on hydrolysis gives________________
11. Linear polymer of glucose units present in starch is known as ______________
12. Guncotton is __________.

IV. 13. What is the basic unit of protein?
14. Write the structure of a optically inactive amino acid.
15. Which vitamin is known as Ascorbic acid?
16. Give the name of any one plant alkaloid.

Section B, Weightage 1(short answer type)
Answer any 8
17. How can you prepare Nylon 6,6.
18. Write a short note on industrial application of cellulose.
19. What is meant by mutarotation.
20. What are the differences between RNA and DNA?
21. Write a short note on zwitter ion property of amino acids.
22. What is Canizarro’s reaction?
23. Define saponification value and iodine value.
24. What is clemmenson reduction?
25. Write a short note on MPV reduction.
26. What are essential oils? Give an example.
27. What is meant by isoelectric point?
28. Draw the structure of vitamins C.

Section C, Weightage 2 (Short essay type)
[Answer any 5 questions]
29. How can you convert CH3Cl to α-hydroxy acetic acid?
30. Write a note on benzoin condensation with the help of its mechanism?
31. How can you convert arabinose to glucose?
32. Write a note on Strecker synthesis at amino acid?
33. Discuss the importance of Quinine, Morphine and Codeine?
34. Write a short note pinacol-pinacol rearrangement.
35. Distiguish between anomers and epimers.
36. Explain SPPS

Section D, weightage 4(long essay type)
[Answer any two questions]
37. (1) What is Coumarin ? How can you prepare that ? What are its uses?
 (2) How can you prepare Salicylic cid by (i) Riemer- Tiemann and (ii) Kolbe’s reactions?How is it converted to Aspirin.
38. i. What is the product firmed when glucose is treated with excess of phenyl hydrazine? Write the mechanism.
 ii. What are the functions of DNA and RNA
39. i. Discuss the mechanism of reduction with Lithium aluminium hydride and sodium borohydride.
 ii. What are the differences between the above two reducing agents
SYLLABUS FOR B.Sc. CHEMISTRY PROGRAMME

Core Course No. - XI Course Code– CH1642
Semester – VI Credit-4
Organic Chemistry III
(2013 admission onwards)

Lecture- Tutorial- Lab : 4-0-2

72 Hrs

Aim of the Course; To make the students aware of the synthesis of organic compounds and the preparation and properties of organic sulphur and nitrogen compounds, types of polymers, their synthesis and applications and the important organic spectroscopy.

Objective of the Course: By studying this part the students get an idea of polymerization and organic spectroscopy.

Module –I Polymers

Module –II Organic Sulphur and Nitrogen compounds

Module III- Heterocyclic compounds and Drugs-

Module IV – Organic Spectroscopy

UV-Visible Spectroscopy- absorption, types of electronic transitions, effect of conjugation, concept of chromophore, auxochrome, bathochromic, hypochromic shifts, hyperchromic and hypochromic effects. UV-Visible spectra of enes. Calculation of \(\lambda_{\text{max}} \).

IR Spectroscopy- molecular vibrations, factors influencing vibrational frequencies, inductive effect and hydrogen bonding. Finger print region and interpretation of IR spectra of simple organic molecules such as phenol, acetone, acetonilide, benzaldehyde.

NMR spectroscopy- Proton NMR- shielding and deshielding effect, chemical shift, factors influencing chemical shift, spin-spin splitting, coupling constant, interpretation of PMR spectrum of simple molecules like ethylbromide, pure ethanol and impure ethanol(acidic impurities), acetaldehyde and toluene.

Basic knowledge of \(^{13}\)C NMR. Theory of Mass spectrometry- mass spectrum, base peak and molecular ion peak, types of fragmentation, McLafferty rearrangement, isotopic effect. Applications- determination of molecular mass.

References:
11. William Kemp “Organic spectroscopy”
13. Fred W. Billmeyer “Textbook of polymer chemistry”
14. V R Gowariker, N V Viswanathan, Jayadev Sreedhar “Polymer Science”
Section A, Weightage 1
Answer all questions in one word/sentence

I. 1. Name an addition polymer.
2. Give an example for an acid dye.
3. Complete the reaction $C_6H_5Br + NaNH_2 \rightarrow$?
4. Name the standard used in 1H NMR

II. 5. Which is more basic triethylamine or N,N-Dimethylamine?
6. Give an example for sulfadrugs which cures dysentery
7. Name the starting material/reagent of Benzidine rearrangement
8. Draw the structure of isoquinoline.

III. 9. Name the products obtained in the following reaction
$CH_3CHO + CH_2N_2 \rightarrow$?
10. Give a use of phenylhydrazine reagent
11. What is the type of electronic transition possible in saturated compounds?
12. What is the monomer of natural rubber?

IV. 13. Which substance is used as the internal standard in NMR?
14. What is the product obtained on treating diazonium compound with steam?
15. What is the radiation used in NMR spectroscopy?
16. Name the monomer used in the preparation of Nylon-6.

Section-B, Weightage 1 (Short answer type)
Answer any 8

17. Describe Gabriel Phthalimide synthesis of amines.
18. Which is more basic aniline or ethylamine. Account for this
19. Give a method of preparation of sulphanilic acid
20. Give the structure of (1) Congo red (2) Fluorescein
21. Write two examples of biodegradable polymers. What are their monomers?
22. What is meant by an addition polymer? Give an example
23. Give examples for (a) direct dye (b) mordant dye
24. What is finger print region in IR?
25. Explain the 1H NMR spectrum of butan-2-one?
26. Explain chromophore and auxochrome with examples.
27. What are basic peaks and molecular ion peaks.
28. Explain the laws of absorption in UV spectroscopy.

Section C, Weightage 2(short essay type)
Answer any 5 questions.

29. How many proton signals would be expected in the NMR spectrum of pure ethanol? Indicate the multiplicity of peaks.
30. Describe skraup synthesis of quinoline.
32. What is McLafferty rearrangement?
33. Explain Hoffmann elimination reaction with an example.
34. Explain the synthesis of methyl orange.
35. How will conjugation affect the UV spectrum?
36. Explain Shielding and deshielding effect in NMR spectra.

Section D, Weightage 4 (Long essay type)
Answer any two questions.

37. (a) Give the mechanisms of Cannizzaro reaction, Perkin reaction and Benzidine rearrangement.
(b) What are dyes? How are they classified?

38. (a) What is diazotization? How is benzene diazonium chloride prepared? Discuss any four reactions.
(b) (i) What are sulfa drugs? (ii) Describe azo coupling. (iii) What are the applications of sulpha pyridine and sulpha diazine?

39. (a) What are the factors affecting chemical shift? (b) Explain the mechanism of chlorination and nitration in Indole.
Aim
To provide an insight into the thermodynamic and kinetic aspects of chemical reactions and phase equilibrium. To give an insight to the various electrochemical systems.

Objectives
The main objective of the course is to study the basics of electrochemistry and its importance to modern industry and technology. The course introduces various types of reactions and the different factors that determine the rate of chemical changes. The course also includes the study of the phase diagrams of one and two component systems and elementary ideas of photochemistry.

Unit I: Chemical Kinetics
Order of reaction, Derivation of integrated rate equation of zero, first, second and third order reactions, nth order reaction, determination of order of reactions:- Graphical and analytical methods using integrated rate equations, Fractional life- method, Differential rate equation method, Isolation method. Kinetics of complex reactions:- Derivation of rate equation of (a) opposing reactions when both forward and backward reactions are of first order (b) first order consecutive reactions (c) parallel reactions forming two products with first order rate process, Qualitative idea of chain reactions.

Unit II: Chemical and Ionic equilibria
Equilibrium constant and free energy, Thermodynamic derivation of law of mass action, relation between Kp,Kc and Kx, Reaction isotherm, Temperature dependence of equilibrium constant , Pressure dependence of equilibrium constant, Clausius-clapeyron equations and its applications.

Ionic equilibrium : Ionic product of water, Effects of solvents on ionic strength, levelling effect, Pka and Pkb values, solubility product and common ion effect and their applications, pH and its determination by indicator methods, buffer action, Henderson’s equation , hydrolysis of salts of all types, degree of hydrolysis and hydrolytic constant, determination of degree of hydrolysis, relation between hydrolytic constant and ionic product of water.

Unit III: Phase Equilibria
Phase Equilibria:-Terminology, the phase rule, thermodynamic derivation of phase rule and its application to (a) water system (b) sulphur system (c) solid-liquid equilibria involving simple eutectic system such as Pb-Ag system, KI-water system,
freezing mixtures, thermal analysis and desilverisation of lead (d) solid-liquid equilibria involving compound formation with congruent and incongruent melting points:- FeC13-H2O system and Na2SO4-H2O system (e) solid–gas system- decomposition of CaCO3, dehydration of CuSO4.5H2O, deliquesce and efflorescence.

Unit IV: Binary liquid systems & catalysis
12 hrs

Liquid-Liquid system:- Completely miscible, ideal and non-ideal mixtures, Raoult’s law, vapour pressure- composition and temperature-composition curves, fractional distillation, deviation from Raoult’s law, Azeotropic mixtures, partially miscible liquid system, critical solution temperature, Conjugate layers, example for upper, lower and upper cum lower CST, Theory of steam distillation, distribution law, its thermodynamic derivation, limitations of distribution law, application of distribution law to the study of association and dissociation of molecules, solvent extraction.

Catalysis:- Theories of catalysis, Intermediate compound formation theory, steady state method, Enzyme catalysis, Michaelis-Menten law.

Unit V: Electromotive force
12 hrs

Electrochemical cells(brief explanation) Reference electrodes-standard hydrogen electrode, calomel electrode, Types of electrodes-Metallic electrodes, anion reversible electrodes and redox electrodes, Electrode reactions and cell reactions, Derivation of Nernst equation for electrode potential and cell potential, Gibb’s Helmholtz equation and EMF of a cell, calculation of ΔG, ΔH and ΔS from EMF data.

Concentration cells with and without transference, electrode and electrolyte concentration cells, derivation of equation for the EMF of concentration cells with and without transference, Liquid Junction Potential, Fuel cells :- Hydrogen-Oxygen fuel cell, Hydrocarbon – Oxygen fuel cell.

Redox electrodes and redox systems, formal redox potential, principle of redox indicators, over voltage and polarization.

Applications of potential measurement:- Determination of ionic product of water, hydrolysis constant and solubility product, pH value using quinhydrone and glass electrode, potentiometric titrations of acid-base and redox reaction.

Unit VI: Electrical conductance & Photochemistry
12 hrs

Inter ionic attraction theory, Debye-Huckel-Onsager equation (Qualitative treatment only) activity and activity co-efficient of electrolytes, Kohlrausch’s law and its applications , wein effect, Debye-Falkenhagen effect, Walden’s rule.

Ionic mobilities:- Transference number and its determination by Hittorff’s and moving boundary methods, abnormal transference numbers, Applications of conductivity measurements:- Determination of degree of dissociation of weak electrolytes, degree of hydrolysis, solubility of sparingly soluble salts, conductometric titrations involving strong acid- strong base, strong acid-weak base, weak acid- strong base, weak acid-weak base and precipitation.

Photochemistry: Grothus-Draper, Beer- Lambert and Stark- Einstein laws, Quantum yield, Reason for very low and very high quantum yields, Rate equation for decomposition of hydrogen iodide, Qualitative treatment of H2-Cl2 reaction and H2-Br2 reaction, Fluorescence and phosphorescence, chemiluminesence and photosensitization, Explanation and examples.
At least 100 problems are to be worked out from all units together. 30% of the questions for Examination shall contain problems.

References:
1. Advanced Physical Chemistry, Gurdeep Raj, Goel publishing house
2. Elements of Physical Chemistry, Glasstone and Lewis, Macmillan
3. Physical Chemistry, P.C. Rakhit, Sarat Book House, Calcutta
6. Physical Chemistry, Levin, 5th edn, TMH
7. Physical Chemistry, G.M. Barrow, 6th edn, The McGRAW-HILL Companies, INC
I 1. For the chemical reaction aA + bB Products, the rate constant of reaction is found to be k = [A]^l[B]^m. The order of the reaction is ________
2. Represent the electrochemical cell formed when Zn electrode is coupled with Ag electrode.
3. Give the Arrhenius equation.
4. Write the integrated rate equation for a first order reaction.
II 5. Write Debye- Hückel- Onsager equation.
6. Give the relation between hydrolytic constant, dissociation constant and ionic product of water of a salt of strong acid and weak base.
7. The solubility of AgCl in water at 25°C is 0.00179 g/L. Its solubility product at 25°C is. __________
8. The pKa values of four acids are given below. Arrange them in the increasing order of their acidity

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>pKa Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃COOH</td>
<td>4.80</td>
</tr>
<tr>
<td>ClCH₂COOH</td>
<td>2.86</td>
</tr>
<tr>
<td>(CH₃)₃CCOOH</td>
<td>5.05</td>
</tr>
<tr>
<td>CH₃OCH₂COOH</td>
<td>3.53</td>
</tr>
</tbody>
</table>

III 9. The expression for quantum yield of a photochemical reaction is ________.
10. The eutectic composition of Pb – Ag system is __________
11. __________ is an efflorescent substance.
12. Write the reduced phase rule equation.
IV. 13. Fractional distillation of an aqueous solution of ethanol does not give absolute alcohol, because it is
 (i) an ideal solution (ii) a minimum boiling azeotrope
 (iii) a maximum boiling azeotrope (iv) an acidic solution
14. Give the Nernst equation for the potential of a copper electrode.
15. The following mechanism has been proposed for the enzyme catalysis

 \[k_1 \quad k_2 \]
 \[E + S \overset{k_1}{\underset{k_2}{\rightleftharpoons}} ES ; ES \overset{k_{-1}}{\rightarrow} P + E \]

 Using steady state approximation for [ES], write the rate of the reaction.
16. Give an example for a system having upper cum lower CST.

\[0.25 \times 16 = 4 \]

Section B, Weightage 1 each (short answer type)
(Answer any eight questions from the following. Each answer must contain 4 points.)

17. Define the term activation energy. Why different reactions proceed at different rates?
18. Give one example each for a consecutive and a parallel reaction
19. What is meant by common ion effect? Explain with an example.
20. Define buffer solution and buffer index.
21. Describe with example (i) Triple point (ii) Eutectic point
22. Explain the term congruent melting point with an example
23. What is critical solution temperature? How does it vary by the addition of an electrolyte?
24. What are azeotropes? Explain with an example.
25. What is meant by liquid junction potential? How can it be almost eliminated?
26. How will you construct a calomel electrode?
27. What is Debye Falkenhagen effect?
28. Write a note on conductometric titration of acetic acid against sodium hydroxide?

Section C, Weightage 2 each (short essay type)
(Answer any five questions from the following.) Each answer must contain 8 points.

29. The rate constant of a second order reaction is 5.70×10^{-5} dm3 mol$^{-1}$ S$^{-1}$ at 25°C and 1.64×10^{-4} dm3 mol$^{-1}$ S$^{-1}$ at 40°C. Calculate the activation energy and the Arrhenius pre-exponential factor.
30. What would be the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 500 ml? Dissociation constant of acetic acid at 25°C is 1.75×10^{-5}.
31. Explain the principle of freezing mixture by taking KI – H$_2$O system as an example.
32. State and explain Nernst distribution law. What are the limitations of the law?
33. What are fuel cells? Describe H$_2$ – O$_2$ fuel cell and its cell reactions.
34. Explain the terms (i) Fluorescence (ii) Phosphorescence
35. What are the laws of photochemistry, explain?
36. Derive Clausius-Clapeyron equation and mention its applications.

Section D, Weightage 4 each (long essay type)
(Answer any two questions.)

37. Discuss in detail Lindemann theory of unimolecular reactions.
38. (a) Derive van’t Hoff equation for temperature dependence of equilibrium constant.
(b) The equilibrium constant for a reaction is 1×10^5. Calculate the standard free energy change for the reaction in kilojoules at 25°C.
39. How will you determine the transport number of ions by moving boundary method?

$1 \times 8 = 8$
$2 \times 5 = 10$
$4 \times 2 = 8$
B.Sc Chemistry (Programme) Lab course
Semester II,

PART B. LABORATORY
COMPUTER LABORATORY
[No ESA for this component]

B.Sc Chemistry Programme
SEMSTER I, III & IV
Course Code CH1141, CH1341 (Lab Course I)
Three hours examination in semester IV. (Credit 2)
(2013 admission onwards)

I. Qualitative Analysis (Micro Analysis)

a. Studies of the reactions of the following radicals with a view to their identification and confirmation: Pb$^{2+}$, Cu$^{2+}$, Bi$^{3+}$, Cd$^{2+}$, Sn$^{2+}$, Sb$^{3+}$, Fe$^{2+}$, Fe$^{3+}$, Al$^{3+}$, Cr$^{3+}$, Zn$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Mg$^{2+}$, K$^{+}$, NH$_4^+$, CO$_3^{2-}$, S$^{2-}$, NO$^{-}$, NO$_3^-$, F, Cl, Br, I, BO$_3^-$, acetate, oxalate, CrO$_4^{2-}$, PO$_4^{3-}$ and SO$_4^{2-}$.

b. Systematic qualitative analysis by microscale methods of a mixture containing two acidic and two basic radicals from the above list (not more than one interfering radical).

II. Inorganic Preparations

The following preparations are to be done:-

a. Potash alum
b. Hexamine cobalt
c. Chloride
d. Tetramine copper
e. Sulphate
f. Mohr’s salt
g. Microcosmic salt
h. Sodium cobalti nitrate
i. Sodium nitro pruside
j. Manganese phthalocyanin
k. Potassium trioxalatochromate and
l. Potassium trioxalatoferrate
B.Sc Chemistry Programme Laboratory Course
Semester II & V
Course Codes CH1544
Inorganic Volumetric analysis (Lab Course Number II)
(Credit 5) Three hours examination in semester V*
(2013 admission onwards)

Inorganic Volumetric analysis (Double Burette titration)

(a) Acidimetry and alkalimetry

Preparation of carbonate free sodium hydroxide. Use of constant boiling hydrochloric acid Titrations using (1) Strong acid – strong base (2) Strong base – weak acid (3) Strong acid – weak base, determination of Na2CO3 and NaHCO3 in a mixture by indicator method and NH3 in an ammonium salt by direct and indirect methods.

(b) Permanganometry

The following determinations are to be done using standard permanganate solution (1) Ferrous iron (2) Oxalic acid (3) Hydrogen peroxide (4) Calcium (5) Nitric and (6) MnO2 in pyrolusite.

(c) Dichrometry

Determination of Ferrous iron using internal indicator and Ferric iron after reduction with SnCl2.

(d) Cerimetry

Standardisation of ceric ammonium sulphate with Mohr’s salt. Determination of oxalic acid using ceric ammonium sulphate.

(e) Iodometry

Standardisation of thiosulphate using KIO3, electrolytic copper and potassium dichromate. Determination of a copper salt.

(f) Precipitation titration

Determination of chloride in neutral medium.

(g) Complexometry (using EDTA)

Standardisation of EDTA solution with ZnSO4 – determination of Zn, Mg, Ni and Ca – determination of permanent and temporary hardness of water.
I. Physical Chemistry Practicals

The following experiments are to be done:

Determination of:

1. Partition coefficient of iodine between CCl\(_4\) and H\(_2\)O or Partition coefficient of ammonia between CHCl\(_3\) and H\(_2\)O
2. Transition temperature of a salt hydrate. Molar mass of a solute using transition point depression of a salt hydrate.
3. Depression in freezing point of a solid solvent by cooling curve method. Molar mass of a solute.
5. Viscosity of binary mixtures and then concentration of an unknown mixture.
6. Surface tension of binary mixtures and then concentration of an unknown mixture.
7. Refractive indices of KCl solutions of different concentrations and then concentration of an unknown KCl solution.
8. Conductometric titration of NaOH Vs HCl.
9. Potentiometric titration of Fe\(^{2+}\) vs Cr\(_2\)O\(_7^{2-}\)
10. Potentiometric titration of KMnO\(_4\) Vs KI
11. Determination of water equivalent of a calorimeter and heat of neutralisation of strong acid – strong base.
12. Kinetics of hydrolysis of an ester
13. Influence of KCl impurity on miscibility temperature of phenol – water system and then the determination of concentration of a given KCl solution.
I. Organic Chemistry Practicals (micro scale)

1. Tests for elements: Nitrogen, halogens, and sulphur
2. Determination of physical constants
3. Studies of the reactions of common functional groups using known organic compounds.
4. Qualitative analysis with a view to characterization of the functional groups. The following compounds may be given for the analysis: chlorobenzene, benzyl chloride, phenol, $o - m - p$ - cresols, naphthols, resorcinol, benzaldehyde, acetophenone, benzophenone, benzoic, phthalic, cinnamic, and salicylic acids, ethyl benzoate, methyl salicylate, benzamide, urea, aniline, $o - m$, p - toluidines, dimethylaniline, nitrobenzene, o - nitro toluene p - nitro toluene, m - dinitrobenzene, naphthalene, anthracene, glucose, and sucrose.

Organic preparations involving halogenation, nitration, oxidation, reduction, acetylation, benzoylation, hydrolysis, and diazotisation. Isolation of an organic compound from a natural source, e.g., Hippuric acid from cow’s urine.

5. Chromatography
 a. Paper chromatographic separation of a mixture of nitroanilines, amino acids, and sugars.
 b. Separation of a mixture of dyes by column chromatography.

6. Organic Estimation
 a. Molar mass determination of an acid and base by titration method
 b. Determination of the phenol/aniline by bromate - bromide method
 c. Determination of the equivalent of an ester
B.Sc. Chemistry Programme Laboratory Course
Semester VI
Course Codes CHI645 (Lab Course V)
Gravimetry
Three hours examination in semester VI# (Credit 4)

I. Gravimetry

The following determinations are to be done using silica crucible (1) Ba as BaSO₄ (2) Sulphate as BaSO₄ (3) Iron as Fe₂O₃ (4) Calcium as CaCO₃ (5) Aluminium as Al₂O₃ and Magnesium as Mg₂P₂O₇

The following determinations are to be done using sintered crucible (1) Magnesium as oxinate (2) Nickel using dimethyl glyoxime (3) Copper as copper thiocyanate and (4) Silver as silver chloride

II. Colorimetry (Using photo electric colorimeter)

Determination of Iron using thiocyanate and ammonia using Nessler’s reagent.

REFERENCE

2. V.V.Ramanujam, “Semi micro Qualitative Analysis”
3. E.S.Gilreath “Qualitative Analysis using semi micro method” Mc Graw Hill
4. A.I.Vogel, “A text book of Qualitative Inorganic Analysis” Longmass
5. A.I.Vogel, “Elementary Practical Organic Chemistry” Longmass
7. Mann and Saunders, “Practical Chemistry”
8. A.Findlay, “Practical Physical Chemistry”
10. N.K.,Vishnu, “Advanced practical organic chemistry” Vikas publishing house, New Delhi

*Examination for CH1544 Lab course II and CH1545 lab course III may be conducted on the same day for 6 hrs at a stretch.
Examination for CH 1644 Lab course IV and CH 1645 lab course V may be conducted on the same day for 6 hrs at a stretch.
a. Components for End Semester Evaluation: Inorganic Qualitative Analysis

(Weightage 24)

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Component</th>
<th>Grade awarded</th>
<th>*Grade point</th>
<th>Weightage</th>
<th>#Weighted Grade point</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ANSWER TO THE QUESTION</td>
<td>All four correct : A
Only three : B
Only two : C
Only one : D
None : E</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Preliminary experiments</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Colour and appearance</td>
<td>All four : A
Only three : B
Only two : C
Only one : D
None : E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Solubility/Action of heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Flame test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Action with NaOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Preliminary tests for anions</td>
<td>Seven or eight : A
Five or six : B
Three or Four : C
One or Two: D
None : E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Action with dil.HCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Action with con.H₂SO₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Action with H₂SO₄ & MnO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Action with H₂SO₄ & paper ball</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Ethyl Borate test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Ethyl acetate test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Ammonium molybdate test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>NaOH & Al powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Systematic tests for anions</td>
<td>Seven or eight : A
Five or six : B
Three or Four : C
One or Two: D
None : E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Preparation of sodium carbonate extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Dil. HNO₃ + AgNO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Dil. HCl + BaCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Dil. HCl + Zirconyl Nitrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Dil.CH₃COOH + CaCl₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>FeCl₃ test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Brown ring test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Systematic recording</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1. Confirmatory test of 1st anion</td>
<td>All four correct : A
Only three : B
Only two : C
Only one : D
None : E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Correct identification of 1st anion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Confirmatory test of 2nd anion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Correct identification of 2nd anion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>1. Intergroup separation with systematic recordings</td>
<td>All four correct : A
Only three : B
Only two : C
Only one : D
None : E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Elimination of interfering anion/intragroup separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Group identification for cation I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Group identification for cation II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two CORRECT tests (Test reagents + observation + inference) for 1st cation</td>
<td>Two CORRECT tests (Test reagents + observation + inference) for 2nd cation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td>All four correct : A Only three : B Only two : C Only one : D None : E</td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

b. Sub-Components for Lab report (weightage 6)

<table>
<thead>
<tr>
<th></th>
<th>LAB REPORT</th>
<th>Grade awarded</th>
<th>*Grade point</th>
<th>Weightage</th>
<th>#Weighted Grade point</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No. Experiments Qualitative analysis : 12 mixtures</td>
<td>Twelve – A Grade Eight – B Grade, four – C Grade, >four – D grade None – E Grade</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Reactions of ions with equations, Spot test, Correct recording and Neatness</td>
<td>All four : A Only three : B Only two : C Only one : D</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Inorganic Preparations</td>
<td>Six – A Grade Five – B Grade Four – C Grade <Three – D grade None – E Grade</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total Weighted Grade point for Lab Report b

*Grade point : A=4, B=3, C=2, D=1
#Weighted Grade point = Grade Point x weightage
\[\text{Grade Point Earned} = \frac{\text{Weighted Grade point of a + b}}{30} \]
GRADE =
Components for end semester evaluation of Volumetric analysis

<table>
<thead>
<tr>
<th>SI No</th>
<th>i. Main Components and sub components</th>
<th>ii. Grade</th>
<th>iii. Grade point (A=4, B=3, C=2, D=1, E=0)</th>
<th>iv. wt.</th>
<th>Weighted grade point (iii × iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Lab Report-</td>
<td>12 expts : A 8 expts : B 4 expts : C <4 expts : D None : E</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>Procedure-</td>
<td>All eight sub components: A Only six: B Only four: C Only two: D None: E</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1. Correct intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Preparation of standard solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Standardization of intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Indicator and end point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Making up of given solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Titration of made up solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Indicator and end point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Any other relevant points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STANDARDISATION</td>
<td>All Four sub components: A Only three: B Only two: C Only one: D None: E</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>a</td>
<td>Tabulation, Lab skill, Calculation AND Neatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>ESTIMATION</td>
<td>All Four sub components: A Only three: B Only two: C Only one: D None: E</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>Tabulation, Lab skill, Calculation AND Neatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy of the result (Estimation)</td>
<td>Up to 1.5% error A 1.51 – 2.5% B 2.51 – 3.5% C > 3.5% D</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>IV</td>
<td>Viva</td>
<td>Correct Answer to 4 Questions: A 3 Questions: B 2 Questions: C 1 Question: D None: E</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Components for end semester evaluation of Physical chemistry experiments

<table>
<thead>
<tr>
<th>SI No</th>
<th>i. Main Components and sub components</th>
<th>ii. Grade</th>
<th>iii. Grade point A=4, B=3, C=2, D=1, E=0</th>
<th>iv. wt.</th>
<th>Weighted grade point iii × iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Lab Report-</td>
<td>12 expts : A 8 expts : B 4 expts : C <4 expts : D None : E</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Procedure-</td>
<td>All Four sub components: A Only three: B Only two: C Only one: D None : E</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Principle of the Experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Relevant equation / graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Materials and apparatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Neat tabulation and systematic recording</td>
<td>All Four sub components: A Only three: B Only two: C Only one: D None : E</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Correct representation of data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Graphical representation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Satisfactory skill in experimentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Neatness of data and result</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Viva</td>
<td>Correct Answer to 4 Questions: A 3 Questions: B 2 Questions: C 1 Question: D None : E</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Performance of experiment,</td>
<td>Details of grade distribution given separately</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>calculation and accuracy of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>result (accuracy may depend upon the experiment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIVERSITY OF KERALA
B.Sc. CHEMISTRY PROGRAMME (CORE) SEMESTER V
CH 1644 LAB COURSE IV (PRACTICAL)
ORGANIC CHEMISTRY EXPERIMENTS
SCHEME OF VALUATION
TIME -3 HRS
WEIGHTAGE: 30

<table>
<thead>
<tr>
<th>Components for End Sem Evaluation of Organic Chemistry Experiments</th>
<th>Grades</th>
<th>Weight</th>
<th>Weighted grade point</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Main Component</td>
<td>Sub-Components</td>
<td>Grades</td>
</tr>
<tr>
<td>1</td>
<td>Lab report</td>
<td>i. Required No: of Experiments done ii. Data and experimental details sufficient iii. Correctness of results reported iv. Neatness of presentation and absence of errors/mistakes in the Record Book</td>
<td>All 4 subcomponents : A Only three : B Only two : C Only one D None : E:</td>
</tr>
<tr>
<td>3</td>
<td>Two preliminary experiments Na fusion extract preparation Test for elements N / halogens</td>
<td>All four correct : A Only three : B Only two : C Only one : D None : E</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Two tests each for Aromatic/aliphatic & saturated/unsaturated</td>
<td>All four : A Only three : B Only two : C Only one : D None : E</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Systematic analysis Identification test - functional group Confirmation test</td>
<td>All four : A Only three : B Only two : C Only one : D None : E</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Viva</td>
<td>4 Questions: A 3 Questions: B 2 Questions: C 1 Question: D None : E</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Preparation & physical constants</td>
<td>i. Quality of the Recrystallized Compound Prepared ii. Quantity of the Compound Prepared iii Physical Constants iv. Preparation of derivative</td>
<td>All 4 subcomponents : A Only three : B Only two : C Only one : D None : E</td>
</tr>
</tbody>
</table>
Components for End Sem Evaluation of Gravimetric Analysis

<table>
<thead>
<tr>
<th>NO</th>
<th>Main component</th>
<th>Sub component</th>
<th>Grade</th>
<th>Weight age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lab Course Report</td>
<td>i. Required No: of Experiments done sufficient ii. Data and experimental details sufficient iii. Correctness of results reported iv. Neatness of presentation and absence of Errors/mistakes</td>
<td>All four : A Only three : B Only two : C Only one : D None : E</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Experiment Report & Lab Skill</td>
<td>i. Correct Equation and Result Representation ii. Correct Calculation iii Satisfactory skill in experimentation iv. Neatness of data and result presentation</td>
<td>All four : A Only three : B Only two : C Only one : D None : E</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Viva</td>
<td></td>
<td>All four : A Only three : B Only two : C Only one : D None : E</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Calculations & Result</td>
<td>i. <1.5% ii. >1.5- < 2.0 iii.> 2.0 - < 2.5 iv.> 2.5 - < 3.5 v. > 3.5</td>
<td>A B C D E</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: If necessary, the schemes given above for Lab course I – V may be modified by the respective Board of Examiners.
University of Kerala
Open Course for Other Majors-Semester-5 Credit-2
Course-CH1551.1
2011 admission onwards
Essentials of Chemistry

Module 1: Atomic structure and Periodic Classification of Elements (9hrs)

Module 2: Nuclear Chemistry (9 hrs)

Module 3: Polymer Chemistry (9 hrs)

Classification of polymer: Origin, structure, synthesis, Molecular forces. Commercially important polymers: Application of polyethylene, polystyrene, polyhaloolefines, Nylon-6, Nylon-66, Melamine, Terylene, Bakelite, Natural and synthetic rubber, vulcanization, inorganic polymer: (Examples Only).

Module 4: Chemistry in Biological Process (9hrs)

Module 5: Chemistry in action (9hrs)

Dyes: classification based on constitution, application, examples, uses. Drugs: Antipyretic, analgesic, antiseptic, disinfectants, tranquillisers, antibiotics structure, name and uses only. Soaps and detergents: Hard and soft soaps, anionic, cationic and non-ionic detergents, cleansing action of soaps, Explosives: TNT, TNG, RDX, Gun cotton: name, structure and action. (No structure or chemical reactions needed)

Module 6: Environmental Chemistry (9hrs)

Air Pollution: Types of pollutant in air- carbon monoxide, carbon dioxide, Nitrogen oxides, Sulphur dioxides, hydrogen sulphide, Cl₂ CFC, particulate matter, metals, fly ash, asbestos, hydrocarbons- source and influence. Acid rain, Green house effect, ozone layer and its depletion. Water Pollution: Various factors affecting purity of water, sewage water, industrial waste, agricultural pollution such as pesticides,

References
2. H. S. Arniker, “Essentials of Nuclear Chemistry: Environmental Pollution”.
3. B.K. Sharma “Environmental Pollution”.
9. A.K. Dey,“Environmental Chemistry”.

Section A, Weightage 0.25 each (answer in a word \ sentence)

Answer all questions

I
1. One orbital can accommodate a maximum of ____________ electrons.
2. __________ states that orbitals are filled in the increasing order of energy.
3. There are __________ quantum numbers.
4. The shape of s orbital is ____________.

II
5. Who discovered radioactivity?
6. What is the mathematical expression for the half life period of a 1st order reaction?
7. Name any unit of radioactivity.
8. Who proposed Group Displacement law?

III
9. Bakelite is a polymer of phenol and ____________.
10. Monomer of Nylon 6,6 is ____________.
11. An example of an inorganic polymer is ____________.
12. Name any compound which causes acid rain.

IV
13. Name an enzyme.
14. Write an example of a sex hormone.
15. What is the expansion of DNA?
16. Write an example for a dye. \[0.25 \times 16 = 4\]

Section B, Weightage 1 each (Short answer type)

Answer any eight questions from the following. Each answer must contain 4 points.

17. Name the pollutants in air?
18. What are the factors affecting the purity of water?
19. Explain Hund’s rule of maximum multiplicity with an example.
20. Define electron affinity, explain with an example.
21. Distinguish between half life period and average life period.
22. Explain artificial radioactivity.
23. Write the structure and applications of polyhalo olefins.
24. What is vulcanization of rubber?
25. What are corticosteroidal hormones? Explain with example.
26. Distinguish between DNA and RNA.
27. How are dyes classified?
28. Explain cleansing action of soap. \[1 \times 8 = 8\]

Section C, Weightage 2 each (Short essay type)

Answer any five questions from the following. Each answer must contain 8 points.

29. Explain the source and hazards of fly ash and asbestos.
30. Explain briefly soil pollution.
31. What are periods and groups in the periodic table? What is periodicity?
32. Explain Bohr model of atom.
33. Distinguish between nuclear fission and nuclear fusion with examples.
34. What are Nylon 66, Melamine and Terylene?
35. What are the functions and deficiency diseases of Vitamin C, Vitamin D and Vitamin E.

36. Write a note on explosives. $2 \times 5 = 10$

Section D,

Weightage 4 each (Long essay type)

Answer any two questions.

37. Write an essay on plastic waste and long term use of fertilizers.

38. What are quantum numbers? Explain.

39. Explain Group Displacement law and radioactive decay series. $4 \times 2 = 8$
Open Course For Other Majors-Semester-V Credit-2
Course-CH1551.2
2011 admission onwards
Fundamentals of Chemistry & Its Application to Everyday Life

Module 1 Evolution of Chemistry
Evolution of Chemistry - ancient speculations on the nature of matter, early form of chemistry-alchemy, Robert Boyle and the origins of modern chemistry in the latter 1600s - origin of modern chemistry - Antoine Lavoisier and the revolution in chemistry - Role of Chemistry as a central science connecting Physics, Biology and other branches of science. Basic ideas of interdisciplinary areas involving Chemistry

Module 2 Atomic Structure
Atom- model of Dalton- Thomson – Rutherford and Bohr. Nature of electron proton and neutron – atomic number – mass number- isotopes -state the relative charges and approximate relative masses of a proton, a neutron and an electron - describe, with the aid of diagrams, the structure of simple atoms as containing protons and neutrons (nucleons) in the nucleus and electrons arranged in shells (energy levels) (no knowledge of s, p, d and f orbitals);

Module 3—Periodic Table
The Periodic Table - Periodic trends, Group properties - describe the relationship between group number and the ionic charge of an element- similarities among the elements in the same group - metallic to non-metallic character from left to right across a period of the Period Table- Properties of elements in Group I and XVII using the Periodic Table

Module 4 Structure and properties of materials
Elements, compounds and mixtures – elementary idea of ionic bond and covalent bond- compare the structure of simple molecular substances, e.g. methane; water, carbon dioxide, iodine, with those of giant molecular substances, e.g. poly(ethene); sand (silicon dioxide); diamond; graphite in order to deduce their properties compare the bonding -structures of diamond – graphite, electrical conductivity.

Module 5 Chemicals used in everyday life. (No structural formula and preparation needed)

Module 6 Chemicals in food and beverages
Important chemical ingredients/ taste makers used in packed food - soft drinks - and its health hazards. Chemicals in food production - fertilizers used in natural sources - Fertilizers urea, NPK and Super phosphates - uses and hazards. Adulterants in milk, ghee, oil, coffee powder, tea, asafoetida, chilli powder, pulses and turmeric powder - identification. artificial sweeteners - food preservatives.
References
3. J. D. Lee, “Concise Inorganic Chemistry”
4. M. C. Day and Selbin “Theoretical Inorganic Chemistry”
5. N.C. Datta “The Story of Chemistry”

University of Kerala
Model Question Paper
2011 admission onwards
Open Course for other Majors Course CH1551.2
Fundamentals of Chemistry & Its Application to Everyday Life

Time: Three Hours Maximum Weightage : 30

Section A, Weightage 0.25 each
(answer in a word / sentence)
Answer all questions

I
1. The modern atomic theory is called: ______________
2. __________ states that orbitals are filled in the increasing order of energy.
3. Name an artificial sweetener?
4. The shape of s orbital is ______________.

II
5. Who proposed the atomic theory?
6. The branch of chemistry which deals hydrocarbons and their derivative is called _______.
7. What is superphosphate?
8. Who is the Father of Modern Chemistry?

III
9. How many atoms are present in a molecule of ozone?
10. Two atoms with the same number of protons but different number of neutrons are called ________
11. What is a diamond made up of?
12. Which element has the electron configuration 2,1.

IV
13. Name a liquid element.
14. What is the shape of water molecule?
15. How many valence electrons are there in carbon?
16. Name the main compound present in cooking gas.

0.25×16 = 4

Section B, Weightage 1 each (Short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.
17. Name any two Toxic Chemicals in Cosmetics
18. Obtain the electron configuration for (a) N; (b) F.
19. Explain Hund’s rule of maximum multiplicity with an example.
20. Define electron affinity, explain with an example.
21. Which of the following elements Li, Be, B, C, N, O, F and Ne
are metals?
22. Explain Bohr model of atom.
23. Why is the electronegativity value of most noble gases equal to zero?
24. What are the Health Effects of Drinking Soda?
25. Which do you expect to have more metallic character, Lead (Pb) or Tin (Sn)?
26. What is a Match Head of match stick made Of?
27. Explain why graphite conducts electricity whereas diamond doesn't.
28. Is the reactivity of group I metals increasing or decreasing down the group? Explain why?

Section C, Weightage 2 each (Short essay type)
Answer any five questions from the following. Each answer must contain 8 points.
29. Explain the colour of firecrackers.
30. What is the difference between covalent and ionic bonding?
31. What are periods and groups in the periodic table? What is periodicity?
32. What are adulterants.
33. How is Thomson’s model of the atom different from Dalton's model of atom?
34. What's the difference between an oxidation number and an ionic charge?
35. Explain the health hazards associated with drinking soft drinks?
36. How can metallic character change across a period?

2×5 = 10

Section D, Weightage 4 each (Long essay type)
Answer any two questions.
37. Describe clearly the link between increasing effective nuclear charge across a period and the changes in van der Waals radius
38. The pH of aqueous solutions of elements in the third period changes as the period is crossed. Explain how these changes are directly related to the changes in effective nuclear charge across the period.
39. Explain the role of some chemicals in household items
Open Course for Other Majors - Semester-5 Credit-2
Course-CH1551.3
2011 admission onwards
Environmental Chemistry

Module -I
Environmental Components: Structure and composition of the - Atmosphere, hydrosphere, biosphere and Lithosphere –

Module -II
Water pollution: Sources, its effect and control; Sampling and measurement of water quality and their analysis, water quality standards, BOD and COD Hard water – soft water Eutrophication and restoration of lakes.

Module -III
Air Pollution: Types and sources of air pollution, Common Air Pollutants - Effects of air pollution; Smog – ozone layer depletion – green house effect – acid rain

Module -IV

Module -V
Major environmental disasters - - mercury poisoning in Minamata, Japan , Itai-itai disease due to cadmium poisoning in Japan - Love Canal toxic waste site, Seveso disaster chemical plant explosion - Bhopal disaster - Chernobyl incident.

Module -VI
Major environmental laws: Clean Air Act, Clean Water Act, Safe Drinking Water Act, Oil Pollution Act, Pollution Prevention Act, Toxic Substances Control Act, Occupational Safety and Health Act. Rio declaration- Montreal protocol, Kyoto protocol Introduction to Green chemistry (elementary ideas only)

References

2. B. K. Sharma “Air Pollution”.
3. V. K. Ahluwalia “Environmental Chemistry”
4. G.W. vanLoon and S. J. Duffy “Environmental Chemistry: A global perspective”
5. Rashmi Sanghi and M.M Srivasthava, “Green Chemistry Environment Friendly Alternatives”,

University of Kerala
Model Question Paper
2011 admission onwards
Open Course for other Majors Course CH1551.3
Environmental Chemistry

Time: Three Hours Maximum Weightage : 30

Section A, Weightage 0.25 eah
(answer in a word \ sentence)
Answer all questions

I 1. Organomercury poisoning occurred at ______________ near Japan.
2. __________ is a major contributor to greenhouse effect.
3. Methyl isocyanate is related to the environmental tragedy occurred at _________.
4. The ___________ is the rigid outermost shell of a rocky planet.

II 5. Which agency formulated the Pollution Prevention Act of 1990?
6. Triple R in waste management is Recover, __________ and Reuse.
7. The ______________ Protocol is an international treaty designed to protect the ozone layer by phasing out the production of numerous substances believed to be responsible for ozone depletion.
8. Primary sewage treatment removes _________ percentage of the BOD from domestic sewage.

III. 9. What type of pollution causes acid rain?
10. Itai-itai disease was caused due to ____________
11. What are the misuses of plastics?
12. Chlorofluorocarbons cause __________

IV. 13. What are the three major man made sources of air pollution?
14. ____________ resulted in the highest known exposure to TCDD in residential populations
15. What kind of materials are discharged into the seas?
16. What increases the amount of carbon dioxide in the atmosphere?

Section B, Weightage 1 each (Short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.
17. How is pollution related to acid rain?
18. How does ocean pollution affect sea animals?
19. What are the main concepts of Green Chemistry
20. Write short note on Radioactive pollution
21. Discuss the major composition of earth’s atmosphere
22. Write about the cause and consequence of Chernobyl incident
23. What is BOD and COD?
24. What causes radioactive pollution?
25. Distinguish between Hard water and soft water.
26 What is the goal of Toxic Substances Control Act?
27. What is the Greenhouse effect and what is its cause?
28. Write short note on causes and problems of ozone layer depletion.

0.25×16 = 4

1×8 = 8
Section C,
Weightage 2 each (Short essay type)

Answer any five questions from the following. Each answer must contain 8 points.

29. Write short note on volatile organic compounds
30. How can thermal pollution be prevented?
31. How do you control Radioactive pollution?
32. What is smog? How does smog arise?
33. What is Eutrophication
34. What do you mean by Occupational Safety
35. Explain the various layers of the Atmosphere
36. What is Air Pollution? How can air pollution be minimized?

\[2 \times 5 = 10\]

Section D,
Weightage 4 each (Long essay type)

Answer any two questions.

37. Explain the causes of Hardness of water. What are the measures adopted to reduce or remove hardness of water.
38. Discuss the major environmental laws and their influence on regulating the pollution
39. Discuss the various sampling techniques for water quality analysis. What are the major water quality standards?

\[4 \times 2 = 8\]
module I Green Chemistry-1 ---9hrs
Role of Chemical Industries in polluting the environment-Limitations of conventional waste management-pollution prevention-birth of green chemistry-introduction to the principles of green chemistry-atom economy calculation (simple reactions)-production of Ibuprofen-less hazardous chemical syntheses, designing safer chemicals-Bhopal gas tragedy- new greener syntheses, safer solvents and auxiliaries ionic liquids-super critical fluids CO2 and H2O, advantages of SCFs

Module II Green Chemistry-2 ---9hrs
Design for energy efficiency-principle of microwave oven, microwave assisted organic syntheses, simple examples- renewable feedstock- biodiesel, preparation, advantages, catalysis, green catalysts- inherently safer chemistry for accident prevention. Green chemistry practices in research, educational and commercial laboratories- lab safety signs- introduction to micro scale experiments.

Module III Chemistry of Nano Materials Part I 9 Hrs

Module IV Chemistry of Nano materials Part II 9 hrs

Module V :Molecular recognition 9hrs

Module VI Supramolecular chemistry: 9hrs
Introduction to molecular receptors-design principles: Tweezers, Cryptands and Carcerands, Cyclophanes, Cyclodextrins and Calixarenes- Typical examples Molecular recognition and catalysis- catalysis by cation receptors, anion receptors and cyclophanes. Molecular recognition in DNA and protein structure
References
University of Kerala
Model Question Paper
2013 onwards
B.Sc Chemistry Programme
Elective Course Semester VI Course Code
CH1661.1 Supramolecular, Nano Particles and Green Chemistry

Time: Three Hours Maximum Weightage : 30
Section A, Weightage 0.25 each (answer in a word \ sentence)
Answer all questions
I 1. Union carbide factory in Bhopal was involved in the manufacture of ______.
2. ________ is an example of supercritical fluid.
3. ________ is a safer chemical.
4. Size of nano gold particle will be between ________ to ________ nm.
II. 5. Write an advantage of super critical fluid.
6. Write an example of a green catalyst.
7. Lycurgus cup contains __________ nano particle.
8. Name a colloidal semi conductor.
III. 9. SEM stands for ________.
10. AFM uses ______ to scan the surface of a material.
11. The STM is based on_________ of electrons.
12. Carcerand are designed to contain __________.
14. Cation carriers generally contains_________ charged functional groups.
15. Who proposed the correct structure of DNA ?
16. Between an addition and elimination reaction ________ has a better atom economy.

Section B, Weightage 1 each (short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.
17. Which factors lead to the development of green chemistry ?
18. Write a note on Bhopal gas tragedy .
19. Comment on the greenness of liquid bromine as a reagent.
20. Explain co-precipitation.
21. What is hydrothermal methods of preparing colloidal semiconductors.
22. What are the magnetic properties of nanoparticles.
23. What is pi stacking ?
24. Explain the basis of green chemistry.
25. What are the non-covalent bonds involved in molecular recognition?
26. Explain high energy ball milling.
27. What are quantum dots ?
28. How are multi walled carbon nano tubes synthesized?
Section C, Weightage 2 each (short essay type)
Write any five from the following. Each answer must contain 8 points.

29. Write a note on safer solvents and auxiliaries.
30. Explain ionic liquids.
31. What is the principle of microwave oven?
32. How can atom economy be calculated?
33. Explain sono chemistry.
34. Write a note on applications of nano particles.
35. What are cyclophanes and calix arenes?
36. Discuss cation and anion receptors. \[2 \times 5 = 10\]

Section D, Weightage 4 each (long essay type)
Write any two

37. Explain the terms, Ionic Bonding, H-bonding, van der Waal and hydrophobic interactions.
38. Explain the principles of green chemistry.
39. Discuss the various aspects of molecular recognition involved in the structure of DNA and proteins. \[4 \times 2 = 8\]
Module I Introduction to computational chemistry
9 hrs

Module II Computational Methods
9 hrs
Brief description of computational methods: ab initio, semi empirical, DFT and molecular mechanics. RHF, ROHF &UHF methods Basis sets, STO >O. Z-matrix of simple molecules H2O, CO2 & NH3. Common computational and visualization softwares

Module III: Combinatorial Chemistry Introduction
9 hrs
Early development, what is combinatorial synthesis, library synthesis on resin beads, solid phase chemistry, Merrifield peptide synthesis, support for solid phase synthesis, parallel synthesis and mix and split library synthesis.

Module IV Combinatorial Synthesis
9 hrs
Libraries on multipins, libraries on wicks, libraries on laminar solid phases (no detail study).Solution phase library synthesis- eg.-, Hantzsch synthesis of aminothiazole, peptide and nonpeptide libraries(eg. only), Applications of combinatorial chemistry on drug discovery.

Module V: Introduction to Physical organic chemistry
9 hrs

Module VI Correlation of structure with reactivity
9 hrs
References :
1. Guy H. Grant and W.Graham Richards, “Computational Chemistry”, OCP(29)
2. Christopher J. Cramer, John Wiley,“Essentials of Computational Chemistry”,
3. Frank Jenson,“Computational Chemistry”.
4. Ira N. Levine,” Quantum Chemistry”.
Section A, Weightage 0.25 eah (answer in a word/sentence)
Answer all questions

I. 1. DFT stands for _________.
2. RHF is the abbreviation of __________.
3. Modified version of RHF is ________.
4. The expansion of UHF is ____________.
II. 5. Who first proposed solid phase peptide synthesis ?
6. ___________ is an example of electrophilic reagent.
7. The relation connecting ?H,?S and ?G ?
8. Propene is more stable than ethane due to __________.
III. 9. ________ synthesis is an example of solution phase library synthesis.
10. Combinatorial synthesis is based on_________ and _________ synthesis.
11. ________ is an example of heterolytic bond breaking reaction.
12. Arrhenius expression is ___________.
IV. 13. Write Hammett equation.
14. An example of polyamide resin.
15. An example of nucleophilic reagent is ____.
16. All pericyclic reactions involve a __________ intermediate. 0.25×16 = 4

Section B, Weightage 1 each (short answertype)
Answer any eight questions from the following. Each answer must contain 4 points.
17. What are the web resources in learning Chemistry?
18. What is a basis set ?
19. What are the major mechanisms of organic reactions ?
20. Distinguish between STO & GTO.
21. Explain the advantages of combinatorial synthesis.
22. Write an example of an electrocyclic reaction..
23. What are the applications of combinatorial synthesis.
24. What are multipins used in combinatorial synthesis
25. Explain kinetic requirements of reaction .
26. Explain Hammond postulate.
27. Explain +I and – I effects.
28. Explain isotopic labeling in the study of organic reactions. 1×8 = 8

Section C, Weightage 2 each (short essay type)
Answer any five questions from the following. Each answer must contain 8 points.
29. Explain Z matrix of H₂O & NH₃
30. How are molecular visualization softwares used in learning chemistry..
31. How can a eight – member dipeptide library is synthesized ?
32. Explain non-peptide libraries.
33. How are the intermediates detected?
34. Explain substitution reactions of naphthalene.
35. Explain the effect of leaving group in aliphatic substitution reactions.
36. What is self consistent field method. \(2 \times 5 = 10\)

Section D, Weightage 4 each (Long essay type)
Answer any two questions
37. Explain MO theory of hydrogen molecule ion and VB theory of hydrogen
38. Explain neighbouring group participation with examples.
39. How does the structure of substrate affect the aliphatic nucleophilic substitution? \(4 \times 2 = 8\)
B.Sc Chemistry Programme
ELECTIVE-COURSE
2013 admission onwards
Semester-6 Credit-2 Course-2 Course Code - CH1661.3
POLYMER CHEMISTRY 54hrs

Module I: Introduction
9hrs

Module II: Methods of polymerization
9hrs
Methods of polymerization-bulk, suspension, emulsion, solution necessity of copolymers and copolymerization, blocks and graft copolymers. Detailed study of the following thermosetting polymers with respect to synthesis, chemistry, properties and applications. (a) phenol- formaldehyde resins (b) amino resins_ urea- formaldehyde and melamine-formaldehyde resins (c) polyurethanes (d) epoxy resins- grades of epoxy resins, curing process and its importance with mechanism (e) poly carbonates, silicones

Module III: Elastomers-I
9hrs
Polyisoprene, polybutadiene, neoprene. Detailed study of the following thermoplastic polymers with respect to synthesis, chemistry, properties and applications. Polyolefins , polyethylenes_HDPE, LDP,LLDP, polyvinyl chloride-grades of PVC, Teflon, Polystyrene-homopolymers, copolymers such as SBR, ABS, SAN.

Module IV: Elastomers 2
9hrs
Vinyl polymers- polyvinyl acetate and its modifications like PVA, PVB and polyacetals. Polyamides- nylon -6, nylon-66 and other nylons. Poly ethers and poly esters, terephthalates. Cellulosics such as esters, ethers, acetates, butyrates, nitrate, CMC; regenerated cellulose.

Module V: Experimental methods-I
9hrs

Module VI: Experimental Methods –II
9hrs
Viscosity, solubility, optical properties, electrical properties, thermal properties, mechanical properties of polymers. Degradation of polymers by thermal , oxidative ,mechanical and chemical methods. Polymer processing- compression moulding, casting, extrusion , fibre spinning, injection moulding, thermoforming, vulcanization of elastomers, polymer industry in India.
References
2. D.D. Deshpande, “Physical chemistry of macromolecules”, Vishal publications, New Delhi, 1985
I. Name of one natural polymer.
2. Name of one condensation polymer.
3. Name of one inhibitor of chain reaction.
4. Name one addition polymer.
5. Bakelite is a polymer of formaldehyde and ______.
6. Silicones have the linkage of ________.
7. One amino resin is ________.
8. HDPE is ________.

III. What is SBR.
9. What is the structure of the monomer of polyvinyl acetate.
10. What are the monomers of nylon.
11. What is the monomer o neoprene.

IV. One polymer industry in India is at______.
12. LLDP is ________.
13. SAN is _________.
14. Teflon is _________.

Section B (Weightage 1 each) (short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.
17. What are the different types of polymers?
18. Explain the different types of polymerization.
19. What is polyvinylacetate?
20. Distinguish between graft and copolymers.
21. How is melamine-formaldehyde resin prepared?
22. What are elastomers?
23. Write a note on polyolefine.
24. Compare nylon 6 with nylon 6,6.
25. What is the practical significance of molecular weight distribution?
26. Explain fibre spinning.
27. Explain extrusion.
28. What is Carother’s reaction.

Section C (Weightage 2 each) (Short essay type)
Answer any five from the following. Each answer must contain 8 points.
29. Explain number, weight and viscosity average molecular weight.
30. Explain kinetics of polymerization.
31. Explain the preparation of PVC.
32. Explain synthesis and applications of polyurethanes.
33. What are epoxy resins?
34. Explain the size of polymers.
35. What are the factors affecting GTT.
36. Explain polymer processing.

Section D (Weightage 4 each) (essay type)
Answer any two

37. What are the methods of determining molar mass?
38. Write notes on (1) compression (2) moulding (3) casting
39. (a) Explain crystallinity in polymers (b) Explain thermal, electrical and mechanical properties of polymers.
Module - I Blood
Constituents of blood cells and plasma, plasma proteins, albumin and globular - lipoproteins, functions (Details not expected), Coagulation - ‘Coagulation factors, Hemoglobin - functions, Structure of hemoglobin, abnormal hemoglobin.

Module II Respiration
Chemical and physiological events, affecting diffusion of O₂ and CO₂ during respiration, Transport of Oxygen in Blood O₂ dissociation curve, Interrelationship between O₂ and CO₂ transport.

Module III Kidney Function
Body water balance, buffers in blood, Formation of Urine, Kidney function, Renal Threshold, Constituents of Urine, diseases associated with Kidney function

Module IV Nutrition
Measurement of Energy Value of food, Calorific value, caloric requirement, Kilocalorie. Basal metabolic rate (BMR):- Significance, Condition, factors, measurement

Module V Digestion And Absorption Of Food
Outline study of digestion and absorption of Carbohydrates, proteins, fats and enzymes involved, composition and functions of bile - Bile pigments, Bile acids, Bile salts.

Module – VI Biochemical Techniques
Chromatography - Ion exchange, adsorption paper, TLC, GLC, affinity, Gel filtration Electrophoresis - paper, gel, ultracentrifugation.

REFERENCES
1. Gyton, “Text Book of Medical Physiology”.
2. Ganog, “Text Book of Medical Physiology ”.
3. David Randall, “Physiology”.
4. Dr. A.C. Deb, “Fundamentals of Biochemistry”.
6. B. Srilakshmi, “Nutrition Science”.
Section A (Weightage 0.25 each) (answer in a word\sentence)
Answer all questions

I
1. _________ is called good cholesterol.
2. __________ is the cause of sickle cell aneamia.
3. An example of plasma protein is _____.
4. An example of a lipo protein is _____.

II
5. Among the blood cells which is the largest blood cell.
6. NPN stands for ________.
7. Write the renal threshold value of glucose.
8. How much calories are obtained from 1 g of fat?

III.
9. Write the oxidation state of iron in haemoglobin.
10. Name one bile pigment.
11. Technique used to separate bio molecules according to the size.
12. Expand GLC.

IV.
13. Normal pH of blood is ______.
14. Haemoglobin combines with CO2 to form______.
15. Name of the primary bile acid is ________.
16. Enzyme present in gastric juice is ___________.

\[0.25 \times 16 = 4\]

Section B (Weightage 1 each) (short answer type)
Answer any eight questions from the following. Each answer must contain 4 points.

17. What is the difference between plasma and serum?
18. What is pulmonary respiration?
19. What are the constituents of plasma?
20. What is adsorption chromatography?
21. Write short notes on carbohydrates splitting enzymes.
22. Define BMR.
23. Define Rf value.
24. Comment on adult haemoglobin and foetal haemoglobin.
25. Draw the structure of haemo group.
26. What are the abnormal constituents of urine?
27. Write the functions of plasma protein.
28. Write a note on abnormal haemoglobin.

\[1 \times 8 = 8\]
Section C (Weightage 2 each) (Short essay type)
Answer any five from the following. Each answer must contain 8 points.

29. Explain O₂ dissociation curve.
30. Explain the interrelationship between O₂ and CO₂ transport.
31. Explain SDS PAGE.
32. Define briefly blood cells.
33. Comment on major blood buffers.
34. Write the composition and function of bile.
35. Explain paper chromatography.
36. Briefly describe ion exchange chromatography. \[2 \times 5 = 10\]

Section D (Weightage 4 each)
Answer any two (essay type)

37. Explain the digestion and absorption of fat.
38. What are the functions of kidney? Explain urine formation in detail.
39. What are coagulation factors? Explain the mechanism of coagulation? \[4 \times 2 = 8\]