Semester 2

University of Kerala

Discipline	Mathen	natics								
Course Code	UK2DS	UK2DSCMAT100								
Course Title	Theory	of equation	s, Different	ial Calculus	and Geometry					
Type of Course	DSC									
Semester	II									
Academic Level	100-19	100-199								
Course Details	Credit	Total								
		per week	per week		Hours per week					
	4	3		2	5					
Pre-requisites	1. Awa	reness on po	olynomials							
	2. Knov	wledge on th	ne concepts	of functions	s, differentiation					
	and bas	ic geometry	r							
Course Summary	This co	urse include	es theory of	equations, o	differential calculus,					
	polar co	o-ordinates a	and conic se	ections						

Detailed Syllabus

Module	Unit	Contents	Hrs
Ι		Differential calculus I	9
	1	Related Rates, Analysis of functions - Increasing, Decreasing and Concavity, Relative Extrema excluding analysis of polynomials, Relative Maxima and minima, first derivative test, second derivative test, geometric implications of multiplicity	
	Chapt	er2: Section 2.8 and Chapter 3: Section 3.1, 3.2 of Text[1]	
II		Differential calculus II	9
	2	Absolute maxima and minima (for finite closed intervals only), Applied maximum minimum problems (excluding application to economics), Mean value theorem, Rolle's Theorem	

Module	Unit	Contents	Hrs								
	Chapt	er 3: Section 3.4, 3.5, 3.8 of Text[1]									
III		Exponential and logarithmic function	9								
	3	Exponential and logarithmic function, L'Hôpilal's Rule,									
		indeterminate forms.									
	Chapt	er 6: Section 6.1, 6.5 of Text[1]									
IV		Parametric representation of curves	9								
	4	Parametric equation, Tangent lines to parametric curves,									
		arc length of parametric curves, polar coordinate systems,									
		relationship between polar and rectangular coordinates,									
		graphs in polar coordinates (exclude symmetry tests), family									
		of curves									
	Chapt	er 10: Section 10.1 10.2of Text[1]									
V		Teacher designed module - suggested topics	9								
	For in	ternal assessment examinations only.									
	5	The following topics are suggested: Introduction, General									
		Properties, Solution of cubic Equations- Cardan's Method,									
		Newtons Method, Descarte's rule, absolute maxima and									
		minima on infinite intervals, absolute maxima and minima									
		on open intervals, problems involving intervals that are not									
		both finite and closed									
		topics can be found in Chapter 1: Sections 1.1, 1.5 of Tex	xt [2],								
	Chapt	er 3: Sections 3.4, 3.5 of Text [1]									

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. diff command to find derivatives of standard functions, polynomials, including higher order derivatives Ref: Section 3.1 of P4
- 5. Solving polynomial equations and equations involving standard functions Ref : Section 2.2 of P7
- 6. Sketching graphs of curves using plot Ref : Section 6.1 of P2

- Finding maxima, minima using first and second derivative tests. Ref : Section 4.2 of P4
- Finding points of inflection and sketching them Ref : Section 4.2 of P4
- Mean value theorem verification and demonstration via sketching the curve and tangent Ref : P9
- 10. Using integrate command to compute indefinite and definite integrals Ref: Section 3.3.4 of P2
- Defining parametric functions, sketching the graphs Ref: P5, Section 6.1 of P2
- 12. Find arc length of parametric curves
- 13. Plotting in polar co-ordinates Ref: Section 3.3 of P7
- 14. Conversion between various co-ordinate systems
- 15. Finding the number of roots of a polynomial using Descartes' rule of signs
- 16. Solving cubic by Cardan's method
- 17. Finding approximate roots by Newton's method Ref : Section 4.4 of P4
- 18. Sketching family of circles, rose curves

Problems for the practical examination

- 1. Defining polynomials, polynomial functions, evaluating them
- 2. Solving polynomial equations and equations involving standard functions
- 3. Sketching graphs of curves using plot with various styling options (thickness, line style, color etc)
- 4. Finding maxima, minima using first and second derivative tests.
- 5. Finding points of inflection and sketching them
- 6. Mean value theorem verification, and sketching
- 7. Plotting in polar co-ordinates
- 8. Finding the number of roots of a polynomial using Descartes' rule of signs
- 9. Sketching family of circles
- 10. Finding approximate roots by Newton's method

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

- 1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012
- 2. B.S. Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers, 2012.

References

- 1. Barnard and Child, Higher Algebra, Mac Millan, 2000.
- 2. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, Algebra Volume I Ananda Book Depot, 1996.
- 4. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2004.
- 5. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d

- P6. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P7. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P8. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html
- P9. Ajit Kumar, One Variable Calculus with SageMath https://ajitmathsoft.wordpress.com/wp-content/uploads/ 2019/07/cal_onevar_sage.pdf

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Describe algebraic techniques to solve polynomial equations and to identify conic sections	PSO2, PO1, PO2, 3, 4, 7, 8	U,E	F,P	L	
CO 2	Apply differentiation techniques to analyse extrema of functions and solving real life problems	PSO4, PO1, 2, 3, 4, 7, 8	U,An	F,P	L	
CO 3	Sketching parabola, ellipse and hyperbola, and relating polar and cartesian co-ordinates	PSO5, PO1, 2, 3, 7,8	U,E	F,P	L	
CO 4	Analysing parametric representation of curves	PSO2, PO1, 2, 3, 4, 6, 7, 8	R,An	F,P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	2	2	1	1	3	3	2	1			1	2
CO2	2	2	2	3	2	1	3	2	2	1			1	2
CO3	2	2	2	2	3	1	3	2	3	1			2	1
CO4	2	3	2	2	2	1	3	2	2	1		1	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Mathen	Mathematics									
Course Code	UK2DS	UK2DSCMAT101									
Course Title	Integrat	Integration and Multivariate Calculus									
Type of Course	DSC										
Semester	II										
Academic Level	100-19	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours per week						
	4	3	-	2	5						
Pre-requisites	1. Deriv	vative of fur	nctions 2.	Vectors							
Course Summary	This co	urse equip t	he students	to find the in	ntegral of functions,						
	its appl	ications, par	rtial derivati	ves of funct	ions and to know about						
	the basi	c concepts	of vector va	lued functio	ns						

Detailed Syllabus

Module	Unit	Contents	Hrs								
Ι		Integration									
	1	The Indefinite Integral: Antiderivatives, The Indefinite									
		Integrals, Integration formulas, Properties of the indefinite									
		integral, Integral curves.									
	2	Integration by substitution (excluding Integration using									
		computer algebra systems)									
	3	Evaluation of definite integral by substitution									
	4	Integrals of logarithmic Functions									
	5	Integrals of exponential functions									
	Chapt	er 4: Section 4.2, 4.3, 4.9 Chapter 6: section 6.2 (integration	only),								
	6.3 (in	ntegration only) of Text[1]									

Module	Unit	Contents	Hrs							
II		Applications of Integration	9							
	6	Area between two curves								
	7	Volume by Slicing: (excluding other axis of revolution)								
	8	Length of a plane curve(excluding finding arc length by								
		numerical methods)								
	Chapt	er 5: Section 5.1, 5.2, 5.4 of Text[1]								
III		Vector Calculus 1	9							
	9	Introduction to vector valued functions: Parametric curves								
		in 3-space, vector-valued functions, vector form of a line segment								
	10									
	11	11 Unit tangent and normal vectors(excluding binormal vectors in 3-space)								
	Chapter 12: Section 12.1, 12.2, 12.4 of Text[1]									
IV	IV Partial Differentiation									
	12	Functions of two or more variables(Notation and terminology only								
	13	Partial derivatives(excluding estimating partial derivatives from tabular data, partial derivatives and continuity, equality of mixed partials, wave equations)								
	14	The Chain rule								
	15	Maxima and minima of functions of two variables								
	Chapt	er 13: Section 13.1, 13.3, 13.5, 13.8 of Text[1]								
V		Teacher designed module - suggested topics	9							
	For in	ternal assessment examinations only.								
	16	An overwiew of area problem								
	17	Volume by other axis of revolution								
	18	Area of a surface of revolution								
	19	Curvature								
	20	Equality of mixed partials, wave equations								
	21	Langrange mutipliers								
	Sectio	ns from Text [1]								

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3

- 3. Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. Using integrate command to compute indefinite and definite integrals Ref: Section 3.3.4 of P2
- 5. Sketching graphs of curves using plot Ref: Section 6.1 of P2
- 6. Defining curves, finding area between two curves Ref : Section 6.1 of P4
- 7. Finding volumes of solids of revolution, finding arc length Ref : Section 6.3 of P4
- 8. Defining parametric functions, sketching the graphs Ref: P5, Section 6.1 of P2
- 9. diff command to find derivatives of standard functions, polynomials Ref: Section 3.1 of P4
- 10. Finding derivatives of vector valued functions
- Defining vectors, finding their dot and cross products, finding norm of vectors Ref: Section 3.3.5 of P2
- Computing unit tangent and normal vectors, sketching the curve and plotting these vectors Ref : P6
- 13. Defining functions of multiple variables, evaluating them at certain points, differentiating them
- 14. Solving polynomial equations and equations involving standard functions Ref : Section 2.2 of P7
- 15. Computing maxima and minima of multivariable functions Ref : Section 4.3 of P4
- 16. Computing maxima and minima using Lagrange multiplier technique Ref : Section 4.18 of P8
- 17. Plotting in 3-dimension, marking optimal points on the plots obtained through the maxima minima problemsRef : P9, Section 7.1 of P2

Problems for the practical examination

- 1. Computing indefinite and definite integrals of standard functions (trigonometric, log, e, polynomials)
- 2. Demonstrate the plot command with various options (line style, color, thickness etc)
- 3. Finding area between two curves, sketching them

- 4. Finding volumes of solids of revolution, sketching the curves and solids
- 5. Defining multivariable functions, evaluating them, differentiation them
- 6. Defining and solving polynomial equations, evaluating them
- 7. Defining vectors, finding their dot, cross products, norm
- 8. Computing unit tangent vectors plotting them on the vector curves
- 9. computing maxima and minima directly (w/o Lagrange multiplier)
- 10. computing maxima and minima directly using Lagrange multiplier

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

1. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition Wiley, 2018.
- 2. Ian Sneddon, Elements of Partial Differential Equations, Mc Graw-Hill, 2013.
- 3. Peter. V. O Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 4. M. D. Raisinghaniya, Ordinary and Partial Differential Equations, S Chand 18th Edition, 2008.
- 5. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 6. G. B. Thomas, R. L. Finey, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf

- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Sage Quickstart for Multivariable Calculus https://doc.sagemath.org/html/en/prep/Quickstarts/ Multivariable-Calculus.html
- P6. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P7. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P8. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P9. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the fundamental concepts of Integration and Vector valued function.	PSO1, 2 PO1, 3, 6, 7, 8	U, Ap	F,C	L	
CO 2	Analyze the various techniques both in Integration and in Vector Calculus	PSO 2,3 PO1, 2, 3, 6, 7, 8	U, An	C,P	L	
CO 3	Develop problem-solving techniques	PSO 1,2,3,4 PO1, 2, 3, 6, 7, 8	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1	2	2	3	3	3	-	1	-	-	2	1	1
CO2	1	3	1	2	1	1	1	1	3	-	-	2	1	1
CO3	1	3	2	3	2	3	1	3	3	- m 3 Sul	-	3	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- End Semester Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Mathen	Mathematics								
Course Code	UK2DSCMAT102									
Course Title	Integrat	Integration and Applications of differentiation								
Type of Course	DSC									
Semester	Π	П								
Academic Level	100-199									
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	3	-	2	5					
Pre-requisites	1. Integ	gration of ele	ementary fu	nctions 2	. Differentiation					
Course Summary	This co	This course enables the student to understand the applications								
	of diffe	rentiation a	nd evaluate	the integral	s					

Detailed Syllabus

Module	Unit	Contents	Hrs						
Ι		Applications of Derivatives	9						
	1	Related Rates, Analysis of functions - Increasing, Decreasing and Concavity, Relative Extrema excluding analysis of polynomials, Relative Maxima and minima, first derivative test, second derivative test, geometric implications of multiplicity							
	Chapt	er 2: Section 2.8 and Chapter 3: Section 3.1, 3.2 of Text[1]							
II		Maximum Minimum Problems	9						
	2								
	Chapt	er 3: Section 3.4, 3.5 and 3.8 of Text[1]							

Module	Unit	Contents	Hrs						
III		Definite Integral	9						
	3	Integration by Substitution, The Definite Integral							
	Chapt	er 4: Sections 4.3, 4.5 of Text [1]							
	4	4 Evaluating Definite Integrals by Substitution							
	Chapt	er 4: Sections 4.9 of Text [1]							
IV		Evaluation of Integrals	9						
	5	Integration by Parts							
	Chapt	er 7: Section 7.2 of Text [1]							
	6	Integrating Trigonometric Functions							
	Chapt	er 7: Section 7.3 of Text [1]							
V		Suggestions for teacher designed module	9						
	For in	ternal assessment examinations only.							
	7	The following topics are suggested: Absolute maxima and minima on infinite intervals, absolute maxima and minima on open intervals, problems involving intervals that are not both finite and closed, Average Value of a Function and its							
		Applications, Trigonometric Substitutions topics can be found in Chapter 3: Sections 3.4, 3.5, Chapter 4 S Chapter 7: Section 7.4 of Text [1])	Section						

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. diff command to find derivatives of standard functions, polynomials, including higher order derivatives Ref: Section 3.1 of P4
- 5. Solving polynomial equations and equations involving standard functions Ref : Section 2.2 of P7
- 6. Sketching graphs of curves using plot Ref: Section 6.1 of P2
- 7. Finding maxima, minima using first and second derivative tests. Ref : Section 4.2 of P4

- 8. Finding points of inflection and sketching them Ref : Section 4.2 of P4
- Mean value theorem verification and demonstration via sketching the curve and tangent Ref : P9
- 10. Using integrate command to compute indefinite and definite integrals Ref: Section 3.3.4 of P2
- Finding average value of a function over an interval, sketch it to demonstrate its relation with the MVT Ref : Section 6.2 of P4

Problems for the practical examination

- 1. Defining polynomials, polynomial functions, evaluating them
- 2. Solving polynomial equations and equations involving standard functions
- 3. Sketching graphs of curves using plot with various styling options (thickness, line style, color etc)
- 4. Finding maxima, minima using first and second derivative tests.
- 5. Determine if the curve is concave up or down, sketch it.
- 6. Finding points of inflection and sketching them
- 7. Plotting tangent of a curve at specified point on the curve
- 8. Mean value theorem verification, and sketching
- 9. Integrate various standard functions (indefinite and definite)
- 10. Finding avarage value of function

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2004.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Sage Quickstart for Multivariable Calculus https://doc.sagemath.org/html/en/prep/Quickstarts/ Multivariable-Calculus.html
- P6. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P7. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P8. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P9. Ajit Kumar, One Variable Calculus with SageMath https://ajitmathsoft.wordpress.com/wp-content/uploads/ 2019/07/cal_onevar_sage.pdf

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Evaluation of integrals of functions and learn its physical interpretation through various examples	PSO 2, 4	Ap, An	Р	L	
CO 3	Define maxima, minima, critical points and points of inflection	PSO 1	U	F, C	L	
CO 4	Apply the concept of differentiation in real life situation	PSO 3, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	-	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	-	3	3	-	-	-	3	2 Modin	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Mathen	natics								
Course Code	UK2DS	UK2DSCMAT103								
Course Title	Integral	Integral Calculus and Vectors								
Type of Course	DSC	DSC								
Semester	II	II								
Academic Level	100-199	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week		Hours per week					
	4	3	-	2	5					
Pre-requisites	1. Integ	ral of eleme	entary funct	ions 2. Ve	ectors					
Course Summary	This co	This course enable the students to find the integrals and know about								
	the vect	tor valued fu	unctions							

Detailed Syllabus

Module	Unit	Contents	Hrs
Ι		Definite Integral	9
	1	Integration by Substitution, The Definite Integral (Chapter	
		4: Sections 4.3, 4.5 of Text [1])	
	2	Evaluating Definite Integrals by Substitution (Chapter 4:	
		Sections 4.9 of Text [1])	
II		Evaluation of Integrals	9
	3	Integration by Parts (Chapter 7: Section 7.2 of Text [1])	
	4	Integrating Trigonometric Functions (Chapter 7: Section 7.3	
		of Text [1])	
III		Vector Algebra	9
	5	Three dimensional space, vectors, Cylindrical surfaces,	
		algebra of vectors, norm of a vector, vectors determined by	
		length and angle, vectors determined by length and a vector	
		in the same direction, resultant of two Concurrent forces.	
		(Chapter 11: Sections 11.1, 11.2 of Text [1])	

Module	Unit	Contents	Hrs							
	6	Dot Product, Projections, Algebraic properties of dot								
		product, Angle between vectors, Direction angles (Chapter								
		11: Section 11.3 of Text [1])								
IV		Cross product and Vector Valued Functions	9							
	7	Cross product - Algebraic and geometric properties of cross								
		product, scalar triple product, Algebraic and geometric								
	properties of scalar triple product (Chapter 11: Section 11.4									
		<i>of Text</i> [1])								
	8 Introduction to vector valued Functions, Parametric Curves									
		in 3-Space - The parametric equations (introduction only)								
		vector valued functions (introduction only) vector form of a								
		line segment (introduction only) (Chapter 12: Sections 12.1								
		<i>of Text</i> [1])	9							
V		Suggestions for teacher designed module								
	For in	ternal assessment examinations only.								
	9	Average Value of a Function and its Applications								
		Trigonometric Substitutions								
		Calculus of vector-valued Functions								
		Limits and Continuity, Geometric interpretations of limits								
		Derivatives, Geometric interpretation of the derivative,								
		derivative rules Derivatives of dot and cross products								
		(fundamentals only)								
		Integrals of vector valued functions and integral rules								
		(fundamentals only)								
		Unit Tangent, Normal and Binormal vectors (introduction								
		only) Normal and Tangential Components of Acceleration								
	There	Normal and Tangential Components of Acceleration								
		topics can be found in Chapter 4: Section 4.8, Chapter 7: Section 12: Sections 12.2, 12.4 of Text [1]	on 7.4,							
	Chapt	ter 12: Sections 12.2, 12.4 of Text [1].								

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. diff command to find derivatives of standard functions, polynomials, including higher order derivatives

Ref: Section 3.1 of P4

- 5. Sketching graphs of curves using plot Ref: Section 6.1 of P2
- Defining vectors, finding their dot and cross products, scalar triple product, finding norm of vectors, find angle between them Ref: Section 3.3.5 of P2
- 7. Defining parametric functions, sketching the graphs Ref: P5, Section 6.1 of P2
- 8. Find arc length of parametric curves
- Computing unit tangent and normal vectors, sketching the curve and plotting these vectors Ref : P6
- 10. Plotting in polar co-ordinates Ref: Section 3.3 of P7
- 11. Plotting cylindrical surfaces Ref: Section 7.1 of P2

Problems for the practical examination

- 1. Computing indefinite and definite integrals of standard functions (trigonometric, log, e, polynomials)
- 2. Demonstrate the plot command with various options (line style, color, thickness etc)
- 3. Defining and solving polynomial equations, evaluating them
- 4. Defining vectors, finding their dot product, norm
- 5. Finding angle between vectors
- 6. Defining vectors, finding their cross products
- 7. Defining vectors finding scalar triple product
- 8. Computing unit tangent vectors plotting them on the vector curves
- 9. Polar co-ordinate plotting
- 10. Plotting cylindrical surfaces

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Sage Quickstart for Multivariable Calculus https://doc.sagemath.org/html/en/prep/Quickstarts/ Multivariable-Calculus.html
- P6. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P7. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P8. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P9. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Describe the integration of a function and learn its physical interpretation through various examples.	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the concepts of three dimensional space, vectors, different vector operations, vector valued functions and calculus of vector valued functions	PSO 1	U	F, C	L	
CO 4	Able to find limits, derivatives of vector valued functions (R-Remember, U-Understand, Ap-Apply,	PSO 2	Ap	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	2	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	3	3	-	-	-	3	2	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments

• Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Mathematics							
Course Code	UK2DS	UK2DSCMAT104						
Course Title	Integral	Calculus a	nd Ordinary	Differentia	al Equations			
Type of Course	DSC							
Semester	II							
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	3	-	2	5			
Pre-requisites	1. Integration 2. Differentiation							
Course Summary	This course enable the students to find the integrals and							
	to solve	certain diff	erential equ	ations				

Detailed Syllabus

Module	Unit	Contents	Hrs			
Ι		Definite Integral				
	1	Integration by Substitution, The Definite Integral (Chapter				
		4: Sections 4.3, 4.5 of Text [1])				
	2	Evaluating Definite Integrals by Substitution (Chapter 4:				
		Sections 4.9 of Text [1])				
II		Evaluation of Integrals	9			
	3	Integration by Parts (Chapter 7: Section 7.2 of Text [1])				
	4	Integrating Trigonometric Functions (Chapter 7: Section 7.3				
		of Text [1])				
III		Differential Equations	9			
	5	Solution curves without a solution (not meant for examination purpose), Separable Equations (<i>Chapter 2:</i>				
		Sections 2.1, 2.2 of Text [2])				
	6	Linear Equations, Exact Equations (<i>Chapter 2: Section 2.3, 2.4 of Text [2]</i>)				

Module	Unit	Contents	Hrs					
	7	Solutions by Substitutions, A Numerical Method (Chapter						
		2: Section 2.5, 2.6 of Text [2])						
IV	Higher Order Differential Equations							
	8	Initial-Value and Boundary-Value Problems, Homogeneous						
		Equations, Nonhomogeneous Equations, (Chapter 3:						
		Sections 3.1 of Text [2])						
	9	9 Homogeneous Linear Equations with Constant Coefficients						
		(Chapter 3: Section 3.3 of Text 2)						
V		Suggestions for teacher designed module	9					
	For in	ternal assessment examinations only.						
	10	10 Average Value of a Function and its Applications						
		Trigonometric Substitutions						
		Linear Models, Nonlinear Models						
		Reduction of Order						
	Cauchy–Euler Equations							
	These topics can be found on Chapter 4: Section 4.8, Chapter 7 Section							
	of Tey	kt [1] and Chapter 2: Section 2.7, 2.8, Chapter 3: Section 3.6 c	of Text					
	[2]							

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- 3. Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. Using integrate command to compute indefinite and definite integrals Ref: Section 3.3.4 of P2
- Finding average value of a function over an interval, sketch it to demonstrate its relation with the MVT Ref : Section 6.2 of P4
- 6. diff command to find derivatives of standard functions, polynomials Ref: Section 3.1 of P4
- 7. Solving differential equations (de) using desolve Ref : P11
- Solving linear ODE of first order Ref : Section 1.4 of P10, Section 10.1 of P2

- Solving separable ODE of first order Ref : Section 1.4 of P10, Section 10.1 of P2
- 10. ODE Initial value problems Ref : Section 1.2 of P10
- 11. Solving Higher order constant coefficient linear homogeneous ODEs Ref : Section 1.3 of P10
- 12. Numerical solutions to ODE Ref : Section 1.6 of P10

Problems for the practical examination

- 1. Computing indefinite and definite integrals of standard functions (trigonometric, log, e, polynomials)
- 2. Demonstrate the plot command with various options (line style, color, thickness etc)
- 3. Defining and solving polynomial equations, evaluating them
- 4. Finding avarage value of function using integration
- 5. Solving differential equations
- 6. Solving linear ODE of first order
- 7. Solving separable ODE of first order
- 8. ODE Initial value problems
- 9. Solving Higher order constant coefficient linear homogeneous ODEs
- 10. Numerical solutions to ODE

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

- 1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons, 2012
- 2. Dennis G. Zill, Advanced Engineering Mathematics 6th Edition, Jones & Bartlett Learning, 2016.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P6. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P7. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P8. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html
- P9. Ajit Kumar, One Variable Calculus with SageMath https://ajitmathsoft.wordpress.com/wp-content/uploads/ 2019/07/cal_onevar_sage.pdf

- P10. David Joyner, Marshall Hampton, Introductory Differential Equations using Sage http://www.sandal.tw/upload/Introduction%20to% 20Differential%20Equations%20Using%20Sage%20[David% 20Joyner,%20Marshall%20Hampton.pdf
- P11. Sagemath documentation Sage Quickstart for Differential Equations
 https://doc.sagemath.org/html/en/prep/Quickstarts/
 Differential-Equations.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	OS4/04	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of integration	PSO 1	U	F, C	L	
CO 2	Describe the integration of a function and learn its physical interpretation through various examples.	PSO 2, 4	Ap, An	Р	L	
CO 3	Demonstrate a thorough understanding of basic concepts in ordinary differential equations and initial value problems.	PSO 1	U	F, C	L	
CO 4	Able to solve various types of first-order, second order ordinary differential equations, including separable equations, linear equations and equations with constant coefficients	PSO 2, 5	Ap	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO2	-	3	-	2	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	3	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

Mapping of COs to Assessment Rubrics

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

University of Kerala

Discipline	Mathen	Mathematics						
Course Code	UK2DS	UK2DSCMAT105						
Course Title	Applica	ations of Dif	fferentiation	and Ordina	ry Differential Equations			
Type of Course	DSC							
Semester	II	II						
Academic Level	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	3	-	2	5			
Pre-requisites	Differe	Differentiation, Integration						
Course Summary	This co	This course enable the students to understand the applications						
	of diffe	rentiation a	nd to solve o	certain diffe	rential equations			

Detailed Syllabus

Module	Unit	Contents	Hrs					
Ι	Applications of Derivatives							
	1	Related Rates, Analysis of functions - Increasing, Decreasing and Concavity, Relative Extrema excluding analysis of polynomials, Relative Maxima and minima, first derivative test, second derivative test, geometric implications of multiplicity						
	Chapt	er 2: Section 2.8 and Chapter 3: Section 3.1, 3.2 of Text[1]						
II		Maximum Minimum Problems	9					
	2	Absolute maxima and minima (for finite closed intervals only), Applied maximum minimum problems (excluding application to economics), Mean value theorem, Rolle's Theorem						
	Chapt	er 3: Section 3.4, 3.5 and 3.8 of Text[1]						

Module	Unit	Contents	Hrs						
III		Differential Equations	9						
	3	Solution curves without a solution (not meant for examination purpose), Separable Equations							
	Chapter 2: Sections 2.1, 2.2 of Text [2]								
	4	Linear Equations, Exact Equations							
	Chapt	er 2: Section 2.3, 2.4 of Text [2]							
	5	Solutions by Substitutions, A Numerical Method							
	Chapt	er 2: Section 2.5, 2.6 of Text [2]							
IV		Higher Order Differential Equations	9						
	6	Initial-Value and Boundary-Value Problems, Homogeneous							
		Equations, Nonhomogeneous Equations							
	Chapter 3: Sections 3.1 of Text [2]								
	7 Homogeneous Linear Equations with Constant Coefficients								
	Chapt	er 3: Section 3.3 of Text [2]							
V		Suggestions for teacher designed module	9						
	For in	ternal assessment examinations only.							
	8	Absolute maxima and minima on infinite intervals							
		Absolute maxima and minima on open intervals							
		Problems involving intervals that are not both finite and closed							
		Linear Models							
		Nonlinear Models							
		Reduction of Order							
		Cauchy–Euler Equations							
		topics can be found on Chapter 2: Section 2.7, 2.8, Chapter 3: S	ection						
	3.6 of	Text [2])							

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. diff command to find derivatives of standard functions, polynomials, including higher order derivatives Ref: Section 3.1 of P4

- 5. Solving polynomial equations and equations involving standard functions Ref : Section 2.2 of P7
- 6. Sketching graphs of curves using plot Ref: Section 6.1 of P2
- 7. Finding maxima, minima using first and second derivative tests. Ref : Section 4.2 of P4
- 8. Finding points of inflection and sketching them Ref : Section 4.2 of P4
- Mean value theorem verification and demonstration via sketching the curve and tangent Ref : P9
- 10. diff command to find derivatives of standard functions, polynomials Ref: Section 3.1 of P4
- 11. Solving differential equations (de) using desolve Ref: P11
- 12. Solving linear ODE of first order Ref : Section 1.4 of P10, Section 10.1 of P2
- Solving separable ODE of first order Ref : Section 1.4 of P10, Section 10.1 of P2
- 14. ODE Initial value problems Ref : Section 1.2 of P10
- 15. Solving Higher order constant coefficient linear homogeneous ODEs Ref : Section 1.3 of P10
- 16. Numerical solutions to ODE Ref : Section 1.6 of P10

Problems for the practical examination

- 1. Solving polynomial equations and equations involving standard functions
- 2. Sketching graphs of curves using plot with various styling options (thickness, line style, color etc)
- 3. Finding maxima, minima using first and second derivative tests.
- 4. Determine if the curve is concave up or down, sketch it.
- 5. Finding points of inflection and sketching them
- 6. Mean value theorem verification, and sketching
- 7. Solving linear ODE of first order

- 8. Solving separable ODE of first order
- 9. ODE Initial value problems
- 10. Numerical solutions to ODE

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.
- 2. Dennis G. Zill, *Advanced Engineering Mathematics* 6th Edition, Jones & Bartlett Learning, 2016.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 4. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata McGraw-Hill, 2003.
- 5. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 6. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html

- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P6. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P7. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P8. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html
- P9. Ajit Kumar, One Variable Calculus with SageMath https://ajitmathsoft.wordpress.com/wp-content/uploads/ 2019/07/cal_onevar_sage.pdf
- P10. David Joyner, Marshall Hampton, Introductory Differential Equations using Sage http://www.sandal.tw/upload/Introduction%20to% 20Differential%20Equations%20Using%20Sage%20[David% 20Joyner,%20Marshall%20Hampton.pdf
- P11. Sagemath documentation Sage Quickstart for Differential Equations
 https://doc.sagemath.org/html/en/prep/Quickstarts/
 Differential-Equations.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define maxima, minima, critical points and points of inflection	PSO 1	U	F, C	L	
CO 2	Apply the concept of differentiation in real life situation	PSO 3, 4	Ap, An	Р	L	
CO 3	Demonstrate a thorough understanding of basic concepts in ordinary differential equations and initial value problems.	PSO 1	U	F, C	L	
CO 4	Able to solve various types of first-order, second order ordinary differential equations, including separable equations, linear equations and equations with constant coefficients	PSO 2, 5	Ар	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	3	-	-	3	-	-	-	-	-	-	-
CO2	-	-	2	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	3	-	-	3	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT106							
Course Title	Linear .	Linear Algebra and Graph Theory							
Type of Course	DSC								
Semester	II	ΙΙ							
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Matr	ices 2. Line	ar equations	S					
Course Summary	This co	This course aims to solve systems of linear equations							
	and to ı	understand t	he basic cor	ncepts of gr	aph theory				

Module	Unit	Contents	Hrs
Ι		Matrices and Systems of linear equatios	12
	1	Linear systems of equations, Gauss elimination, linear Independence, rank of a matrix. (<i>Chapter7: Sections 7.2,</i> 7.4 of Text [1] (vector space is not included))	
	2	Solutions of linear systems: existence, uniqueness (<i>Chapter</i> 7: Section 7.5 of Text [1] (proofs of theorems are not required))	
II		Eigenvalues and Eigenvectors	12
	3	The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors (<i>Chapter 8: Section 8.1 of Text [1]</i>)	
	4	Symmetric, Skew-Symmetric, and Orthogonal Matrices (<i>Chapter 8: Section 8.3 of Text [2]</i>)	

Module	Unit	Contents	Hrs				
III		Graphs	12				
	5	Basic Concepts of graph theory, Graph terminology and special types of graphs Representation of graphs, (<i>Chapter 1: Sections 1.1 to 1.5 of Text [2]</i>)					
	6	Graph isomorphism, connected graphs, disconnected graphs, definitions and examples of Euler's path, circuits, (<i>Chapter 2: Sections 2.1, 2.5, 2.6 of Text [2]</i>)					
IV		Trees and Spanning Trees	12				
	7	Trees, properties, pendant vertices, distance and centers, spanning trees, (<i>Chapter 3: Sections 3.1 to 3.5 and 3.7 of Text [2]</i>)					
	8	Fundamental circuits, finding all spanning trees in a graph, spanning trees in a weighted graph (<i>Chapter 3: Section 3.8, 3.9, 3.10 of Text [2] (proofs of theorems are not required))</i>					
	9	Incidence matrices, path matrices and adjacency matrices of graphs (definitions and examples only) (<i>Chapter 7: Sections 7.1, 7.8, 7.9 of Text [2] (proofs of theorems are not required))</i>					
V		Suggestions for teacher designed topics	12				
	For internal assessment examinations only.						
	10	Determinants Cramer's Rule Diagonalization Quadratic Forms Hamiltonion Path, Hamiltonian circuits Rooted and binary trees					
	The topics can be found on Chapter 7: Section 7.7 of Text [1], Cha						
	Section 8.4 of Text [1] (eigen bases is not included), Chapter 2 of Text [2], Chapter 3: Section 3.5 of Text [2]						

Textbook

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Narasingh Deo, Graph Theory with Applications to Engineering and Computer Science, PHI, 1974.

References

- 1. R. Balakrishnan, K. Ranganathan, A Text book of Graph Theory, Second Edition, Springer, 2012.
- 2. T S Blyth, E F Robertson, *Linear Algebra*, Second Edition, Springer, 2013.
- 3. David C Lay, *Linaer algebra*, Pearson, 2003.

- 4. Gary Chartrand and Ping Zhang, *Introduction to Graph Theory*, New Delhi, New York: Tata McGraw-Hill Pub. Co., 2006.
- 5. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, *Introduction to Linear Algebra*, Fifth Edition, Addison Wesley, 2019.
- 6. Robin J. Wilson, *Introduction to Graph Theory*, Pearson Education Asia, 5th Edition, 2010.
- 7. Thomas Banchoff, John Wermer, *Linear Algebra Through Geometry*, 2nd Edition, Springer, 2003.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of Matrix operations their algebraic properties, System of linear equations and their Matrix representation, Gauss Elimination	PSO 1	U	F, C	L	
CO 2	Able to find the eigen values, powers of matrices and diagonalization of matrices	PSO 2, 4	Ap, An	Р	L	
CO 3	To define and understand the fundamental concepts of graph theory	PSO 1	U	F, C	L	
CO 4	To apply the concepts and theorems that are treated in the course for problem-solving (R-Remember U-Understand Ap-Apply)	PSO 2, 4	Ap, An	Р	L	

Course Outcomes

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	-	-	-	-	-	1	1	-	-	1	2	-	-
CO2	-	2	-	2	-	-	2	2	-	-	-	2	-	-
CO3	2	-	-	-	-	-	1	1	-	-	1	1	-	-
CO4	-	2	-	3	-	-	2	1	1	-	_	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT107							
Course Title	Mathen	Mathematics for Social Sciences - II							
Type of Course	DSC								
Semester	II	Π							
Academic Level	100-199	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1.Know	ledge of fu	nctions, part	ticularly, de	mand functions,				
	revenue	functions a	and cost fun	ctions					
Course Summary	This co	ourse includ	es Different	tial calculus	s, its applications				
	in matri	ix theory an	d game theo	ory					

Module	Unit	Contents	Hrs
Ι		Basics of Differentiation	12
	1	One variable Differentiation, Basic Definition, Process of differentiation, Rules of differentiation, Some Standard rules (without proof)	
	2	Derivative of higher order with simple problems involving polynomial functions(except trignometric and logarithmic functions)	
	Chapt	er 6: 6.3, 6.4, 6.5 of Text [1].	
II		Applications of Derivatives	12
	3 Chapt	Sign of differential coefficients, Second derivative and nature of curve, Maximum and minimum value of a function, Order Condition for maximum-minimum extreme values. er 6: Sections 6.3, 6.4, 6.5, of Text [1]	

Module	Unit	Contents	Hrs						
III		Matrices	12						
	4	Addition, subtraction of Matrices, matrix multiplication, transpose of a matrix properties of transpose of a matrix							
	5	determinants, inverse of a matrix (cofactor method only)							
	Chapt	er 5: Sections 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 5.10 and 5.13 of Text	[1]						
IV		Game Theory	12						
	6	Basic concepts of Game theory Classification and Description of games Pay-off matrix,							
	7	Saddle point solutions (Strictly Determined Games)							
	Chapt	er 20: Sections 20.1, 20.2, 20.3, 20.4 of Text [1]							
V		Suggestions for teacher designed module	12						
	For in	ternal assessment examinations only.							
	8	Applications of simple derivatives: Differential Coefficient							
		and elasticity of demand							
		Some special form of square matrices							
	The to	ppics can be found on Chapter 7: Section 7.1 of Text [1] and							
	Chapt	er 5: Section 5.15 of Text [1]							

Textbook

1. B.C. Mehta, G.M.K. Madnani, Mathematics for Economics. Sultan Chand & Sons, 1976.

References

- 1. Agarwal B.M, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.
- 2. Allen, R.G.D., Mathematical Analysis for Economists. New Delhi: AITBS Publishers, 2008.
- 3. Yamane, Taro., Mathematics for Economists: An Elementary Survey. New Delhi: Prentice Hall of India, 2012.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concepts of derivatives, Maxima-minima	PSO1	R, U	F,C	L	
CO 2	Apply the concepts of differentiation in real life situations	PSO3, 5	Ар	C	L	
CO 3	The basic concepts of matrices	PSO3	U	Р	L	
CO 4	The basic concepts of game theory	PSO1, PO1	U	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	2	1	3	3	2	1	3
CO2	-	-	3	-	3	-	2	3	1	-	-	-	-	1
CO3	-	-	3	-	-	-	3	3	3	2	3	2	1	3
CO4	3	-	-	-	-	-	3	2	-	-	2	1	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics					
Course Code	UK2DS	UK2DSCMAT108					
Course Title	Integral	Calculus a	nd Series				
Type of Course	DSC						
Semester	II	II					
Academic Level	100-19	100-199					
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week		Hours per week		
	4	3	-	2	5		
Pre-requisites	Differe	ntial Calcul	us				
Course Summary	fundam	The course deals with Integrals, applications of integrals and the fundamental theorem of calculus. The intuitive idea of Infinite series and Taylor's theorem is also explained.					

Module	Unit	Contents	Hrs				
Ι		Integration	9				
	1	The Indefinite Integral: Antiderivatives, The Indefinite					
		Integrals, Integration formulas, Properties of the indefinite					
		integral, Integral curves.					
	2	Integration by substitution (excluding Integration using					
		computer algebra systems)					
	3	Evaluation of definite integral by substitution					
	4	Integrals of logarithmic Functions					
	5	5 Integrals of exponential functions					
	Chapt	er 4: Section 4.2, 4.3, 4.9 chapter 6: section 6.2(integration	only),				
	6.3(in	tegration only) of Text[1]					

Module	Unit	Contents	Hrs
II		Applications of Integration	9
	6	Area between two curves	
	7	Volume by Slicing: (excluding other axis of revolution)	
	8	Length of a plane curve(excluding finding arc length by numerical methods)	
III		Infinite series	9
	9	Sequences, Monotone sequences, Infinite series, Convergence tests, Comparison, ratio test	
	Chapt	er 9: Section 9.1, 9.2, 9.3, 9.4, 9.5 of Text [1]	
IV		Taylors theorem	9
	10	Maclaurin and Taylor polynomials and series, Power series (except functions defined by power series), Convergence of Taylor series	
	Chapt	er 9: Section 9.7, 9.8, 9.10 of Text [1]	
V	_	Suggestions for teacher designed module	9
	For in	ternal assessment examinations only.	
	11	An overview of area problem	
		Volume by other axis of revolution	
		Area of a surface of revolution	
		Alternating series	
		Absolute and conditional convergence	
		Root test	
		Convergence of Taylor series	
		Differentiating and integrating power series	
		topics can be found on Chapter 4: Section 4.1, Chapter 5: Se .5, Chapter 9: Sections 9.6, 9.7, 9.8 of Text [1]	ections
	5.2. 5		

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- 3. Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. Using integrate command to compute indefinite and definite integrals Ref: Section 3.3.4 of P2
- 5. Sketching graphs of curves using plot Ref: Section 6.1 of P2

- 6. Find area of surface of revolution of curves
- 7. Find length of a plane curve
- 8. Defining curves, finding area between two curves Ref : Section 6.1 of P4
- 9. Finding volumes of solids of revolution, finding arc length Ref : Section 6.3 of P4
- diff command to find derivatives of standard functions, polynomials, including higher order derivatives Ref: Section 3.1 of P4
- 11. Finding Taylor series representation of a function using differentiation (without usitng taylor function)
- 12. Finding McClaurin series representation of a function using differentiation
- 13. Finding Taylor series representation of a function using differentiation using taylor function
- 14. Plot the graph of the function, and its Taylor series approximation

Problems for the practical examination

- 1. Computing indefinite and definite integrals of standard functions (trigonometric, log, e, polynomials)
- 2. Demonstrate the plot command with various options (line style, color, thickness etc)
- 3. Finding area between two curves, sketching them
- 4. Find area of surface of revolution of curves
- 5. Find length of a plane curve
- 6. Finding volumes of solids of revolution, sketching the curves and solids
- 7. Defining various functions and finding derivatives of various orders
- 8. Finding Taylor series representation of a function using differentiation (without usitng taylor function)
- 9. Finding Taylor series representation of a function using differentiation using taylor function, and plot the graph of the function, and its Taylor series approximation Ref : Section 3.3 of P2
- 10. Finding McClaurin series representation of a function using differentiation

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbook

1. Howard Anton, Irel Bivens, Stephens Davis, *Calculus* 10th Edition Wiley, 2012.

References

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.
- 2. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Sage Quickstart for Multivariable Calculus https://doc.sagemath.org/html/en/prep/Quickstarts/ Multivariable-Calculus.html
- P6. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/ plot/plot3d/parametric_plot3d.html#sage.plot.plot3d. parametric_plot3d.parametric_plot3d
- P7. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P8. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf
- P9. SageMath documentation 3D Graphics https://doc.sagemath.org/html/ en/reference/plot3d/index.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands the basic concept of Integrals and fundamental theorem of Calculus	PSO1, 2, PO1	U	F,C	L,T	
CO 2	Realise the concept of area between two curves	PSO2, PO3, 4	R, U	F	L,T	
CO 3	Develop a concrete idea about sequences and series	PSO1,3 PO2, 3	3,U,An	С	L,T	
CO 4	Use convergence tests to find limits	PSO3, PO3	Ар	C,P	Т	As
CO 5	Apply integration in Modeling Taylor series	PSO1,3 PO3	3,Ap	C,P	Т	As

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	1	3				
2	2					
3						
3						
	3	3 3	3 3	3 3	3 3	3

Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark			\checkmark

Descipline	Mathen	Mathematics					
Cours Code	UK2DS	UK2DSCMAT109					
Course Title	Matrice	Matrices and Linear Equations					
Type of Course	DSC	DSC					
Semester	II	II					
Academic Level	100-199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week		Hours per week		
	4	4	-	-	4		
Pre-requisites	Matrice	S					
Course Summary		This is a brief introductory course on matrices and system of linear equations					

Module	Unit	Contents	Hrs
Ι		Matrices	10
	1	Introduction to System of Linear equations, (Matrices and Matrix Operations, Inverses; Algebraic Properties of Matrices- review only). Elementary matrices and method for finding inverse, more on linear systems and invertible matrices, diagonal, triangular and symmetric matrices	
	Chapt	er 1: Section 1.1, 1.3 to 1.7 of the Text[1]	
II	_	Determinanats	12
	2	Determinants by cofactor expansion, evaluating determinants by row reduction, properties of determinants, Cramer's rule	
	Chapt	er 2: Sections 2.1, 2.2 and 2.3 of Text [1]	
III		Systems of linear equations	12

Module	Unit	Contents	Hrs
	3	Linear Systems of Equations, Gauss Elimination, Linear	
		Independence, Rank of a Matrix. (Sections 7.2, 7.4 of Text	
		[2] (avoid vector space))	
	4	Solutions of Linear Systems: Existence, Uniqueness	
		(Chapter 7 Section 7.5 of Text [2] (omit proofs of theorems))	
IV		Eigen values and Eigen vectors	14
	5	The Matrix Eigenvalue Problem. Determining Eigenvalues	
		and Eigenvectors (Chapter 8 Section 8.1 of Text [2])	
	6	Symmetric, Skew-Symmetric, and Orthogonal Matrices	
		(Chapter 8 Section 8.3 of Text [2])	
	7	Diagonalization (Chapter 8 Section 8.4 of Text [2] except	
		eigen bases)	
V		Suggestions for teacher designed module	12
	For in	ternal assessment examinations only.	
	8	Matrix transformations	
		Orthogonality	
		Geometry of linear systems	
		Orthogonal Matrices	
		Quadratic Forms	
	These	topics can be found on Chapters 1 and 3 of Text [1] and Chapt	er 8 of
	Text [2]	

Textbook

- 1. H Anton, C Rorres, Elementary linear algebra, 11th Edition, John Wiley & Sons, 2013.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.

References

- 1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning, 2005.
- 2. Lee W.Johnson, R. Deanriess, Jimmy Arnold, Introduction to Linear Algebra, Fifth edition, Addison Wisely, 2019.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands system of linear equations	PSO1,2, PO1	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	PSO2, PO3, 4	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	PSO1,3, PO2, 3	U,An	С	L,T	
CO 4	Apply matrices to soleve system of linear equations	PSO1,3	Ар	С	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
2	1					3							
	2							1	3				
2		3					2	2					
	OSd 2	OSA OSA 2 1 2 2 2 2	OS OS OS 2 1 2 2 2 3	OSA OSA OSA OSA 2 1	OSA OSA OSA OSA OSA 2 1	A A A A A A 2 1 2 2 2 3	L L L L L POI 2 1	A A A A A A PO1 PO2 2 1 3 2 2 2 2 3 2	A A A A A PO1 PO2 PO3 2 1 3 1 2 3 2 2	A A A A A POI PO2 PO3 PO4 2 1 - - 3 - - - 2 2 - - - 1 3 2 3 - 2 2 -	A A A A A PO1 PO2 PO3 PO4 PO5 2 1 3 3 1 3 2 3 2 2 1 3	A A A A A PO1 PO2 PO3 PO4 PO5 PO6 2 1 2 1 2 2 2 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1		\checkmark		\checkmark
CO2		\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark			\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2DS	UK2DSCMAT110							
Course Title	Partial	Differentiati	ion and Ana	lytic functi	ons				
Type of Course	DSC	DSC							
Academic Level	100-199	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Integration 2. Differentiation								
Course Summary	Integrat	Integration and applications of Differentiation							

Module	Unit	Contents	Hrs
Ι		Multivariate Calculus	16
	1	Functions of Two or More Variables, Limits and Continuity	
		(Chapter13: Sections 13.1, 13.2 of Text[1])	
	2	Partial Derivatives, The Chain Rule (Chapter 13: Section	
		13.3, 13.5 of Text [1])	
	3	Directional derivatives, Maxima and Minima of Functions of	
		Two Variables (Chapter 13: Sections 13.6, 13.7 of Text [1])	
II		Analytic functions	12
	4	Complex Numbers and Their Geometric Representation	
		(Chapter 13: Section 13.1 of Text [2] (review only))	
	5	Polar Form of Complex Numbers-Powers and Roots	
		(Chapter 13: Section 13.2 of Text [2]	
	6	Derivative-Analytic Function, Cauchy-Riemann Equations	
		Laplace's Equation (Chapter 13: Section 13.3, 13.4 of Text	
		[2])	

Module	Unit	Contents	Hrs
III		Cauchy's Integral Theorem	12
	7	Line Integral in the Complex Plane and is properties (Except	
		Existence of Complex Line integrals & ML Inequality)	
		(Chapter 14: Section 14.1 of Text [2])	
	8	Cauchys Integral Theorems (without proof) Caucy's Integral	
		Formula (without proof) Derivative of Analytic Functions	
		(Chapter 14: Sections 14.2, 14.3 of Text [2])	
IV		Derivatives of Analytic Functions	8
	9	Derivatives of Analytic Functions, Lioville's Theorem and	
		Morreras theorem (Chapter 14: Section 14.4 of Text [2])	
V		Suggestions for teacher designed module	12
	For in	ternal assessment examinations only.	
	10	Geometry of Analytic Functions, Conformal Mapping, Principle of Inverse Mapping (Chapter 17: Section 17.1 of Text [2] all theorems without proof) Möbius Transformations, Extended Complex Plane, Fixed Points (Chapter 17: Section 17.2 of Text [2] all theorems without proof) Special Linear Fractional Transformations, Mapping of Standard Domains (Chapter 17: Section 17.3 of Text [2] all theorems without proof)	

Textbooks

- 1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley and Sons, 2012.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, Wiley Publishers, 10th Edition, 2018.

References

- 1. Anant R Shastri, Basic Complex Analysis of One Variable, Macmillan, 2010.
- 2. Edward B. Saff, Arthur David Snider, *Fundamentals of Complex Analysis with Applications to Engineering and Science*, 3rd Edition, Pearson Education India, 2017.
- 3. James Ward Brown and Ruel V Churchill, *Complex Variables And Applications*, Eighth Edition, McGraw Hill International Edition, 2001.
- 4. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 5. John H Mathews and Russel W Howell, *Complex Analysis for Mathematics and Engineering*, Sixth Edition, Jones and Bartlett Publishers, 2012.
- 6. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2018.

- 7. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.
- 8. B S Tyagi, Functions of A Complex Variable, Kedar Nath Ram Nath, 2021.

E-resources

- 1. https://www.geogebra.org/m/VMa4z2RU
- 2. https://www.geogebra.org/m/wcjfy77h

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define the concept of functions of two or more variables	PSO 1	U	F, C	L	
CO 2	Illustrate derivatives of multivariate functions	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the algebraic operations of complex numbers, complex functions, limits, continuity, differentiablilty of complex functions and conformal mapping.	PSO 1	U	F, C	L	
CO 4	Able to find line integrals, integrals using Cauchy's integral formula (R-Remember, U-Understand, Ap-Apply,	PSO 2, 4	Ap, An	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	-	2	1	-	-	-	3	-	-
CO2	-	-	3	3	-	-	2	1	-	-	-	3	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	3	3	-	-	-	-	3	2	-	_	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics							
Course Code	UK2DS	UK2DSCMAT111							
Course Title	Differe	ntial and Int	egral Calcu	lus					
Type of Course	DSC								
Semester	II	(I							
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	3	-	2	5				
Pre-requisites	1. Integ	gral of eleme	entary funct	ions 2. Ve	ectors				
Course Summary	This co	This course enable the students to find the integrals and know about							
	the vect	tor valued fu	unctions						

Module	Unit	Contents	Hrs						
Ι		Differentiation	9						
	1	Limits, one-sided limits, relations between one-sided and							
		two-sided limits, The derivative function							
	2	Introduction to Techniques of Differentiation, The Product							
		and Quotient Rules, Derivatives of Trigonometric Functions							
	Chapt	er 1 1.1 Chapter 2 Sections 2.1, 2.2, 2.3, 2.4, 2.5 of Text [1]							
II		Chain rule	9						
	3	The Chain Rule, Implicit Differentiation (Chapter 2 Sections							
		2.6, 2.7 of Text 1)							
	4	Derivatives involving Exponential and logarithmic functions							
		(Chapter 6 Section 6.2 of Text 1)							
	Chapt	er 2 Sections 2.6, 2.7, Chapter 6 section 6.1, 6.2 of Text [1]							

Module	Unit	Contents	Hrs							
III		Definite Integral	9							
	5	Integration by Substitution, The Definite Integral								
	6	Evaluating Definite Integrals by Substitution								
	Chapt	er 4: Sections 4.3, 4.5, 4.9 of Text [1]								
IV		Evaluation of Integrals	9							
	7	Integration by Parts (Chapter 7: Section 7.2 of Text [1])								
	8	Integrating Trigonometric Functions (Chapter 7 Section 7.3								
		of Text 1)								
	Chapt	rer 7: Sections 7.2, 7.3 of Text [1]								
V		Suggestions for teacher designed topic	9							
	For in	ternal assessment examinations only.								
	9	Computing limits								
		Continuity								
		Tangent lines								
		Rate of change								
		Exponential and logarithmic functions								
		Integration Trigonometric Substitutions								
		topics can be found on Chapter 1: Section 1.2, 1.5, Chapter 2: S	ection							
	2.1, C	2.1, Chapter 6: Section 6.1, Chapter 7: Section 7.4 of Text [1]								

Topics for Practical sessions – 30 hours

- Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +, -, /, exponentiation; functions like sin, cos, tan, e, log, sqrt, constant π
 Ref: P1, or section 2.3 of P2
- Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries Ref: section 5.1, 5.3, 5.4 of P3
- Defining variables using var, defining polynomials, polynomial functions, evaluating them Ref: P3 or section 1.4 of P4
- 4. Computing two sided limits of various functions Ref : Section 2.2 of P4
- 5. Computing one sided limits of various functions Ref : Section 2.2 of P4
- 6. diff command to find derivatives of standard functions, polynomials Ref: Section 3.1 of P4
- 7. Using integrate command to compute indefinite integrals Ref: Section 3.3.4 of P2

- 8. Using integrate command to compute definite integrals Ref: Section 3.3.4 of P2
- 9. Sketching graphs of curves using plot Ref: Section 6.1 of P2
- 10. Sketching tangent lines of curves at specific points using plot Ref : Section 3.1.1 of P4

Problems for the practical examination

- 1. Demonstrate the basic arithmetic
- 2. Demonstrate using standard trigonometric, log, exponential functions, their evaluation
- 3. Defining and accessing lists
- 4. Defining and accessing dictionaries
- 5. Define polynomials of various order, evaluate them
- 6. Define functions, and evaluate two-sided limits
- 7. Define functions, and evaluate one-sided limits
- 8. Demonstrate the plot command with various options (line style, color, thickness etc)
- 9. Define functions, find their derivatives
- 10. Computing indefinite and definite integrals of standard functions (trigonometric, log, e, polynomials)

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbook

1. H Anton, I Bivens, S Davis, *Calculus*, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath. org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_ Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variables https://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users. rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P6. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/ ~clarson/bard-sage-for-undergraduates-2014.pdf

E-resourses

- 1. https://www.geogebra.org/m/z3jEUrvv
- 2. https://www.geogebra.org/m/ngfvakga
- 3. https://www.geogebra.org/m/AzVR5uU7
- 4. https://www.geogebra.org/m/yyu2my9w

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the concept of limit, differentiation	PSO 1	U	F, C	L	
CO 2	Describe derivative of a function and learn its physical interpretation through various examples.	PSO 2, 4	Ap, An	Р	L	
CO 3	Understand the concept of integration	PSO 1	U	F, C	L	
CO 4	Describe the integral of a function and learn its physical interpretation through various examples	PSO 2	Ар	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	-	-	-	I	3	-	-	-	-	-	-	-
CO2	-	3	2	3	-	-	-	3	2	-	-	-	-	-
CO3	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO4	-	3	3	-	-	-	3	2	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics								
Course Code	UK2M	UK2MDCMAT100								
Course Title	Numeri	cal Ability	- II							
Type of Course	MDC									
Semester	II	II								
Academic Level	100-19	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total					
		per week	per week	per week	Hours per week					
	3	3			3					
Pre-requisites	Basic A	Arithmetic C	perations							
Course Summary	undergo The cou problem quadrat	This course is primarily meant for students who have not undergone a Mathematics course beyond their secondary school. The course is expected to equip the student tackle basic arithmetic problems. The student is further expected to form linear and quadratic equations from simple real world problems on their own and solve the same.								

Module	Unit	Contents	Hrs					
Ι		Series and Progression	12					
	1	1 Arithmetic Series, Geometric series, Arithmetic Series of different orders, Arithmetico-Geometric series, Geometrico- Arithmetic Series. Problems involving the above concepts (<i>Chapter 23 of Text [1]</i>)						
II		Interest Calculation	9					
	2	Simple Interest, Problems involving Simple Interest (<i>Chapter 17 of Text [1]</i>)						
	3	Compound Interest, Problems involving Compound Interest (Chapter 18 of Text [1])						

Module	Unit	Contents	Hrs						
III		Equations	6						
	4	Linear Equation in one variable, Linear equation in two variables, Solving two simultatneous linear equations.							
		Consistent and inconsistent equations. (Chapter 27 of Text [1])							
	5								
IV		Permutations, Combinations							
	6	Fundamental principle of counting, Permutations,							
		Permutations under restrictions, Combinations. (<i>Chapter 31</i> of Text [1])							
V		Suggestions for the teacher designed module	9						
	For in	ternal assessment examinations only							
	7	Harmonic progression							
		Consistent and inconsistent equations							
		Nature of roots							
		Relation between roots and coefficients							
		Formation of a quadratic equation with given roots.							
	These	topics can be found on Chapters 29, 27 and 28 of Text [1]							

Textbook

1. Dinesh Khattar, *Quantitative Aptitude for Competitive Examinations*, Fourth Edition, Pearson, 2016.

References

- 1. H Kruglak, JT Moore, RA Mata-Toledo, *Schaum's outline of theorey and problems of Basic Mathematics, with Applications to Science and Technology*, Second Edition, McGraw-Hill, 1998.
- 2. Rajesh Verma, Fast Track Objective Arithmetic, Arihant, 2018.
- 3. Steven T Karris, *Mathematics for Business, Science and Technology*, Third Edition, Orchard Publications, 2007.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand basic level mathematics used in real life situations	PSO1, PSO2, PSO3, PO1, PO2, PO5	U, An, E	С, Р	L	
CO 2	Do maths problems quickly using ready to use formulae	PSO3, PO2	R, Ap	Р	L	
CO 3	Converting real world problems to mathematical problems	PSO1, PSO2, PSO3, PSO5, PO1, PO2, PO5, PO6	U, An, E	С, Р	L	
CO 3	Understand the concepts of probability and compute it	PSO1, PSO2, PSO3, PO1, PO2	An, E	Р	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	3	-	-	I	3	2	-	-	2	-	-	-
CO2	-	-	3	-	-	-	-	2	-	-	-	-	-	-
CO3	2	3	2	-	2	-	3	2	-	-	2	2	-	-
CO4	2	3	2	-	-	-	3	2	-	-	-	-	-	-

(- -Nil, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark			\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	Mathematics							
Course Code	UK2M	UK2MDCMAT101							
Course Title	Busines	ss Mathema	tics						
Type of Course	MDC								
Semester	II	II							
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	3	3			3				
Pre-requisites	Basic a	lgebra							
Course Summary	compou concept	The course covers methods for finding simple interest and compound interest using different period of compounding concepts like index numbers, time series, trend arc - introduced and different ways for finding these are dealt in detail.							

Module	Unit	Contents	Hrs						
Ι		Basic Mathematics of Finance							
	1	Nominal rate of Interest and effective rate of interest, Continuous Compounding, force of interest, compound interest calculations at varying rate of interest (Chapter 8: Sections: 8.1, 8.2, 8.3, 8.4. 8.5, 8.6, 8.7, 8.9 of							
II		text [1]) Depreciation and discounting	9						
			9						
	2	Present value, interest and discount, Nominal rate of discount, effective rate of discount, force of discount, Depreciation (Chapter 8: Sections: 8.1, 8.2, 8.3, 8.4. 8.5, 8.6, 8.7, 8.9 of text [1])							

Module	Unit	Contents	Hrs
III		Index numbers	9
	3	Definition, types of index numbers, methods of construction	
		of price index numbers, Laspeyer's price index number	
		(Chapter 6 :Sections: 6.1, 6.3, 6.4, 6.5, 6.6, 6.8, 6.16, 6.17	
		(Unit II) of Text [1]	
IV		Time Series	9
	4	Definition of Time Series, Components of Time Series,	
		Analysis of Time Series, Measurement of Trend- Free hand	
		Method (Chapter 7: Sections: 7.1, 7.2, 7.4 (Unit II) of Text	
		[1])	
V		Teacher designed module - suggested topics	9
	For in	ternal assessment examinations only.	
	5	Paasche's price index number	
		Fisher ideal index number	
		Advantages and limitations of index numbers	
		Measurement of Trend – Semi Average Method	
		Method of Least Squares.	
	These	topics can be found on Chapters 6 and 7 of Text [1]	

Textbook

1. B M Agarwal, Business Mathematics and Statistics, Vikas Publishing House, New Delhi, 2009.

References

- 1. Alpha C Chiang, Kevin Wainwright, Fundamental methods of Mathematical Economics, 4th Edition, Mc-Graw Hill, 2005.
- 2. Qazi Zameeruddin, et al., Business Mathematics, Vikas Publishing House, New Delhi, 2009.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Define Index Numbers and find index numbers from a given data using various methods.	PSO1, PO1, 2, 3, 4, 5, 6, 7	U, E	L	С	
CO 2	Define Time Series, components of Time Series and related concepts.	PSO1, PO1, 2, 3, 4, 5, 6, 7	U	L	С	
CO 3	Solve problems related to simple and compound interest using varying periods of compounding.	PSO2, PO1, 2, 3, 4, 5, 6, 7	Ap, E	L	Р	
CO 4	Use mathematical tools to analyse time series and measure trend	PSO2, PO1, 2, 3, 4, 5, 6, 7	E, Ap, An	L	Р	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	2	1	2	3	1	2	1	2	1	-
CO2	3	2	2	1	2	1	2	1	1	3	1	1	1	-
CO3	2	3	2	2	1	1	2	3	1	1	1	2	-	-
CO4	1	3	2	1	1	1	2	3	1	1	1	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics							
Course Code	UK2M	UK2MDCMAT102							
Course Title	Basic C	Basic Operations Research							
Type of Course	MDC								
Semester	II								
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	3	3			3				
Pre-requisites	Basic n	nathematica	l operations	-					
Course Summary	includin graphic Problem for obt algorith	This course covers the fundamentals of Operations Research including the historical background, mathematical formulation, graphical solution methods. It delves into the Transportation Problem and Assignment Problem, exploring various methods for obtaining initial basic feasible solutions and introducing algorithms for solving the Assignment Problem and travelling salesman problem.							

Module	Unit	Contents	Hrs
Ι		Introduction to Operations Research	9
	1	The History of Operations Research	
	2	Methodology of Operations Research	
	3	Applications of Operations Research	
	(Chap	oter 1: Section 1.2, 1.9, 1.13 of Text [1].)	
II		Linear Programming	9
	4	Structure of linear programming model	
	5	Mathematical model of an LPP	
	6	Graphical solution of LP problem	

Module	Unit	Contents	Hrs							
	(Chap	ter 2: Sections 2.2, 2.6,2.8.1, Chapter 3: sections 3.2, 3.3 (Ex	amples							
	3, 5, 3	6.6, 3.7, 3.11) of Text [1].)								
III		Transportation Problem9								
	7	7 Mathematical model of transportation problem								
	8	Initial feasible solution to Transportation Problem								
	(Chap	ter 9: Section 9.2, 9.4.1, 9.4.2, 9.4.3 of Text [1].)								
IV		Assignment Problem								
	9	Mathematical model of Assignment problem								
	10	Hungarian Method for solving Assignment problem								
	(Chap	ter10: Section 10.2, 10.3.1, 10.4 of Text [1].)								
V		Suggestions for the teacher designed module	9							
	For in	ternal assessment examinations only								
	11	Special Cases in Linear Programming								
		The Optimal Solution by MODI method								
		Traveling Salesman Problem								
	These	topics can be found on Chapters 3, 9 and 10 of Text [1]								

Textbook

1. J. K. Sharma, Operations Research - Theory and Applications, Sixth Edition, 2016.

References

- 1. Goel B.S and Mittal S.K "Operations Research" Pragati Prakashan, Meerut ,1973.
- 2. Hardly G, "Linear Programming" Addison Wesley, Reading. Mass, 1962.
- 3. Kapoor V.K, "Operations Research" Sultan chand and sons, New Delhi 1985.
- 4. Nita H.Shah, Ravi M.Gor, Hardik Soni, "Operations Research", Prentice Hall of India, New Delhi, 2007.
- 5. Ravindran A, Don.T. Phillips, James.J.Solberg, "Operations research-Principles and Practice", Second edition, John Wiley and Sons, 2000.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand and apply the concept of mathematical modelling	PSO2, PSO3, PO2	R,U, Ap	F,P	L	
CO 2	Apply the techniques of LPP to solve problems	PSO3, PO2	Ap , E	Р	L	
CO 3	Recognize and formulate a transportation problem	PSO2, PSO3, PO2	R, U	F	L	
CO 4	Solve a travelling salesman problem. R-Remember, U-Understand, Ap-Apply .	PSO3	Ap, E	P valueta (L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	-	3	2	-	-	-	-	2	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	3	-	-	-	-	-	-
CO3	-	3	3	-	-	-	-	2	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark	\checkmark		
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark	\checkmark		\checkmark
CO4	\checkmark	\checkmark		\checkmark

Discipline	Mathen	natics							
Course Code	UK2M	UK2MDCMAT103							
Course Title	Introdu	Introduction to Modular Arithmetic and Cryptography							
Type of Course	MDC								
Semester	II	Ι							
Academic Level	100-19	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	3	3			3				
Pre-requisites	Basic p	roperties of	integers, di	visibility, gc	d				
	Linear	Linear Diophantine equations, Unique factorization							
Course Summary	This is	a short intro	duction to (Cryptograph	y using congruences.				

Module	Unit	Contents	Hrs					
Ι		Modular Arithmetic	9					
	1	Definition of congruence relation, Modular exponentiation,						
		Divisibility tests, linear congruences, (Chapter 5: Sections						
		5.1, 5.2, 5.3, 5.4 of Text[1])						
II		Three Classical Theorems						
	2	The Chinese remainder theorem, Fermat's theorem, Euler's						
		theorem (Chapter 5: Sections 5.5, Chapter 6: Section 6.1,						
		6.2 of Text[1])						
III		Introduction to Cryptography	9					
	3	Shift and affine cipher, Vigenere ciphers, transposition						
		ciphers (Chapter 7: Sections 7.1, 7.2, 7.3, 7.4 of Text[1])						

Module	Unit	Init Contents							
IV		RSA and applications							
	4	RSA, stream ciphers (Chapter 7: Sections 7.5, 7.6 of Text[1])							
V		Suggestions for the teacher designed module							
	For in	ternal assessment examinations only.							
	5	Wilson's theorem, Block ciphers, Secret sharing							
	These	topics can be found on Chapters 6 and 7 of Text [1]							

Textbook

1. James S.Kraft, Lawrence C. Washington. Elementary Number Theory, CRC Press, 2015.

References

- 1. James S.Kraft, Lawrence C. Washington, An Introduction to Number Theory with Cryptography, CRC Press, 2014.
- 2. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 3. Thomas Koshy, Elementary Number Theory with Applications, 2^{nd} Edition, Academic Press, 2007.

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Describe the basic concept of Modular arithmetic	PSO1, PSO2	R	F,C	L	
CO 2	Apply congruence to solve various problems.	PSO3	U,Ap	Р	L	
CO 3	Analyse the properties of integers using congruences via three milestone theorems	PSO3, PSO4	U,An	С	L	
CO 4	Apply congruence to cryptography (R-Remember, U-Understand, Ap-Apply, A	PSO3	R,U,An		L	

Course Outcomes

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	1	2	-	-	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	-	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	\checkmark			\checkmark
CO2	\checkmark	\checkmark		\checkmark
CO3	\checkmark			\checkmark
CO4		\checkmark		\checkmark