MODEL QUESTION PAPER

VIII SEMESTER B.TECH. DEGREE EXAMINATION

(ELECTIVE V)

13.806.12 PROPULSION ENGINEERING (MP)

Time: 3 Hrs

Maximum Marks:100

Part A

Answer *All* questions Each question carries 2 marks

- 1. Distinguish between air breathing engines and rocket engines
- 2. Explain why the use of turboprop engines is limited to aircrafts having flight speed less than 700 km/hour.
- 3. Explain why the use of pulsejet engines is restricted to pilot less aircrafts
- 4. List the methods used for thrust augmentation in turbojet engines
- 5. Explain stalling of compressors
- 6. What are the desirable properties of liquid propellants
- 7. List the factors on which the burning rate of solid propellant grain depend
- 8. Distinguish between storable and cryogenic propellants
- 9. What is meant by multi stage rockets
- 10. Discuss combustion instability applied to Liquid Propellant Rocket (LPR) engines

(2X10)

Part B

Answer one full question from each module

Each full question carries 20 marks

Module I

11.	(a) Explain the working of a centrifugal turbojet engine	(10)
	(b) Explain the working of a ramjet engine. Explain how a SCRAM jet engine is	
	different from ramjet engine	(10)
12.	(a) Explain (i) propulsive efficiency (ii) thermal efficiency(iii) overall efficiency	
	applied to turbojet engine	(9)
	(b) A turbojet inducts 50 kg/s of air and propels an aircraft at a flight speed of	
	900km/hr. The isentropic enthalpy change for the nozzle is 200 kJ/kg and velo	ocity
	coefficient is 0.94. The fuel air ratio is 0.012. The calorific value of fuel is 45	5
	MJ/kg. Calculate (i) thermal efficiency (ii) Thrust power (iii) propulsive effic	iency
	(iv) overall efficiency	(11)

Module II

13.	The following data apply to a turbojet unit of an aircraft flying at an altitude of 6000 m where ambient conditions are 0.4 bar and -25 °C	
	Speed of the aircraft $= 800 \text{ km/hr}$. Dressure ratio of the compressor $= 4.1$	
	Speed of the anciant = 800 km/m , Pressure ratio of the compressor = 4.1 Turking inlat temperature = 1100 K	
	furbline inlet temperature = 1100 K,	
	Combustion chamber pressure drop = 0.2 bar, Ram efficiency = 0.85	
	Isentropic efficiency of the compressor $= 0.85$	
	Isentropic efficiency of the turbine $= 0.90$	
	Nozzle efficiency = 0.95, Exit area of the nozzle = 0.094 m^2	
	Calorific value of fuel = 45 MJ/kg	
	Calculate the thrust and thrust specific fuel consumption	(20)
14.	(a) Discuss the various types of intakes used in turbojet engines	(10)
	(b) Explain the various types of combustion chambers used in turbojet engines	
		(10)
	Module III	
15	(a) Explain neutral, progressive and regressive burning of solid propellant grain	
		(8)
	(b) Explain with figures the solid propellant grain shapes commonly used	(12)
16	(a) Explain expander cycle turbopump feed system used in LPR engine	(10)
-	(b) Explain the working of a nuclear rocket engine. What are the features of it	
		(10)
	Module IV	(10)
17	(a) Explain the working of a hybrid rocket engine	(10)
17	(a) Explain the working of a hybrid focket engine (b) Discuss regenerative goaling used in LDP angings	(10)
	(b) Discuss regenerative cooling used in LFK engines	(10)
18	(a) Derive rocket equation	(10)
	(b) Explain the various types of tests a rocket is subjected to before it is put in	ito
	operational use.	(10)
