Time: 3 hours

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. What do you mean by standard form of an LPP?
- 2. Explain the procedure of solving a LPP using graphical method.
- 3. Using Vogel's approximation method, find an initial basic feasible solution to the transportation problem :

	M_1	M_2	M_3	M_4	Supply
W_1	2	2	2	1	3
W_2	10	8	5	4	7
W_3	7	6	6	8	5
Demand	4	3	4	4	

- 4. Write a note on assignment problem. Write the mathematical model of assignment problem.
- 5. Define the terms 'most probable time', 'optimistic estimate' and 'pessimistic estimate' in connection with project network.
- 6. What do you mean by non-linear programming problem? Define Lagrangian function for the non-linear programming problem : Minimize f(X) subject to $g_i(X) \leq 0, i = 1, 2, ..., n$.
- 7. Prove that if F(X, Y) has a saddle point (X_0, Y_0) for all $Y \ge 0$, then $G(X_0) \le 0$, $Y'_0G(X_0) = 0$.
- 8. Explain the computational economy in dynamic programming. $5 \times 3 = 15$

Part B Anwer all questions from 9 to 13 Each question carries 12 marks

9. A. Solve the following LPP by simplex method:

Maximize
$$Z = 5x_1 + 2x_2 + 3x_3 - x_4 + x_5$$

Subject to $x_1 + 2x_2 + 2x_3 + x_4 = 8$
 $3x_1 + 4x_2 + x_3 + x_5 = 7$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

B. Solve the following LPP by Big M Method:

Maximize
$$Z = -3x_1 + x_2 + x_3$$

Subject to $x_1 - 2x_2 + x_3 \leq 11$
 $-4x_1 + x_2 + 2x_3 \geq 3$
 $2x_1 - x_3 = -1$
 $x_1, x_2, x_3 \geq 0$

10. A. Find a solution to the following transportation problem :

	D_1	D_2	D_3	D_4	Supply
O_1	19	$\frac{30}{30}$	$50 \\ 40$	10	7
O_2	70	30	40	60	9
O_3	40	8	70	20	18
Demand	5	8	7	14	

(Start with an initial basic feasible solution by North West corner rule).

OR

B. Solve the assignment problem:

	J_1	J_2	J_3	J_4
M_1	10	9	8	7
M_2	3	4	5	6
M_3	2	1	1	2
M_4	4	3	5	6

11. A. Consider a project with 5 jobs A, B, C, D and E with the following job sequence: Job A precedes C and D; Jobs B precedes D; Job C and D precede E. The completion times for A, B, C, D and E are 3, 1, 4, 2 and 5 respectively. Construct the project network, find earliest time, latest time and slack time of each event.

OR

B. Consider a project consisting of nine jobs $(A, B, \ldots I)$ with the following precedence relations and time estimates:

Job	Predecessor	Optimisstic Time (a)	Most Probable Time (m)	Pessimistic Time (b)
٨		9	5	0
А	-	Z	5	0
В	А	6	9	12
\mathbf{C}	А	6	7	8
D	B, C	1	4	7
Ε	А	8	8	8
\mathbf{F}	D, E	5	14	17
G	\mathbf{C}	3	12	21
Η	F, G	3	6	9
Ι	Н	5	8	11

- a) Draw the project network for the above problem
- b) Determine the expected duration and variance of each job.
- c) What is the expected length of the project and its variance.

12. A. Find the minimum of

$$f(X) = (x_1 + 1)^2 + (x_2 - 2)^2$$

subject to $g_1(x) = x_1 - 2 \leq 0$,
 $g_2(x) = x_2 - 1 \leq 0$,
 $x_1, x_2 \geq 0$.

OR

В.

Minimize
$$f(X) = -x_1 - x_2 - x_3 + \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

subject to $g_1(X) = x_1 + x_2 + x_3 - 1 \leq 0$
 $g_2(X) = 4x_1 + 2x_2 - \frac{7}{3} \leq 0$
 $x_1, x_2, x_3 \geq 0.$

13. A. a) Prove that in a serial two-stage minimization or maximization problem if

- (i) the objective function ϕ_2 is a separable function of stage returns $f_1(X_1, U_1)$ and $f_2(X_2, U_2)$, and
- (ii) ϕ_2 is monotonic nondecreasing function of f_1 for every feasible value of f_2 , then the problem is decomposable.
- b) Minimize $u_1^2 + u_2^2 + u_3^2$ subject to $u_1 + u_2 + u_3 \ge 10$, $u_1, u_2, u_3 \ge 0$.

OR

- B. a) Write an algorithm to find the shortest path in a minimum path problem.
 - b) Determine the maximum of $u_1u_2u_3$ subject to $u_1 + u_2 + u_3 = 5$, $u_1, u_2, u_3 \ge 0$.

 $5 \times 12 = 60$