KERALA UNIVERSITY
 Model Question Paper- MSc Examination
 Branch: Mathematics
 MM 234- Differential Geometry

Time: 3 hours
Max. Marks: 75

Part A

Answer any 5 questions from among the questions from 1 to 8.

 Each question carries 3 marks1. Show that graph of any function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$.
2. Find and sketch the gradient field of $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}^{2}$.
3. Describe the spherical image, when $n=1,2$, of the surface $-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=0, x_{1}>0$, oriented by the outward normal.
4. Let S be an n-plane $a_{1} x_{1}+\cdots+a_{n+1} x_{n+1}=b$, let $p, q \in S$ and $\mathbf{v}=(p, v) \in S_{p}$. If α is any parametrized curve in S from p to q, find the parallel transport along α of \mathbf{v}.
5. Compute $\nabla_{\mathbf{v}} f$, where $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ and $\mathbf{v} \in R_{p}^{3}, p \in R^{3} \quad$ is $\quad f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}^{2}$, $\mathbf{v}=(1,1,1, a, b, c)$.
6. If \mathbf{X} and \mathbf{Y} are smooth vector fields on an n-surface S with $\mathbf{v} \in S_{p}, p \in S$, then show that $\nabla_{\mathbf{V}}(\mathbf{X} \cdot \mathbf{Y})=\left(\nabla_{\mathbf{v}} \mathbf{X}\right) \cdot \mathbf{Y}(p)+\mathbf{Y}(p) \cdot\left(\nabla_{\mathbf{V}} \mathbf{Y}\right)$.
7. Show that the integral of an exact 1-form over a closed curve is zero.
8. Evaluate the normal curvature of n-sphere S of radius r at $p \in S$ in the direction of $\mathbf{v} \in S_{p}$.

$$
(5 \times 3=15)
$$

Part B

Answer all questions from 9 to 13.

Each question carries 12 marks

9. A (a). State and prove existence and uniqueness of maximal integral curve of a smooth vector field \mathbf{X} on an open set $U \subseteq \mathbb{R}^{n+1}$ and passing through $p \in U$.
(b). Sketch the level sets $f^{-1}(-1), f^{-1}(0)$ for $f\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-$ $x_{n+1}^{2}, n=1$.

B (a). Let $U \subseteq \mathbb{R}^{n+1}$ be an open set and $f: U \longrightarrow \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let $c=f(p)$. Then the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
(b). Find the integral curve through (a, b) of the vector field on \mathbb{R}^{2} given by $\mathbf{X}(p)=(p, X(p))$ where $X\left(x_{1}, x_{2}\right)=\left(x_{2},-x_{1}\right)$.
10. A (a). Show that each connected n-surface in \mathbb{R}^{n+1} has exactly two orientations.
(b). Show that the maximum and minimum values of $g\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$, where $a, b, c \in \mathbb{R}$, on the circle $x_{1}^{2}+x_{2}^{2}=1$ are the eigenvalues of a symmetric 2×2 matrix.

OR

B (a). State and prove existence and uniqueness of maximal integral curve of a smooth tangent vector field \mathbf{X} on an n-surface $S \subseteq \mathbb{R}^{n+1}$ and through $p \in S$.
(b). State and prove Lagrange's Multiplier theorem.
11. A (a). Let S be the cylinder $x_{1}^{2}+x_{2}^{2}=r^{2}$ of radius $r>0$ in \mathbb{R}^{3}. Show that α is a geodesic of S if and only if α is of the form $\alpha(t)=(r \cos (a t+b), r \sin (a t+b), c t+d)$ for some $a, b, c, d \in \mathbb{R}$.
(b). Let $S \subseteq \mathbb{R}^{n+1}$ be an n-surface, $p, q \in S$ and α be a piecewise smooth parametrized curve from p to q. Show that parallel transport along α is a vector space isomorphism which preserves dot products.

OR

B (a). State and prove existence and uniqueness of maximal geodesic in an n-surface S passing through $p \in S$ with initial velocity $\mathbf{v} \in S_{p}$.
(b). State and prove any four properties of Levi-Civita parallelism.
12. A (a). Show that the Weingarten map of an n-surface S at $p \in S$ is self adjoint.
(b). Find the global parametrization of $a x_{1}+b x_{2}=c,(a, b) \neq(0,0)$, oriented by the outward normal. Also find the curvature.

OR

B (a). Show that local parametrizations of plane curves are unique upto reparametrization.
(b). Compute the weingarten map of the n-sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=r^{2}$, oriented by the inward normal.
13. A (a). Show that on each compact oriented n-surface S in \mathbb{R}^{n+1}, there exists a point p such that the second fundamental form at p is definite.
(b). Find the principal curvatures and the Guassian curvature of the hyperboloid $-x_{1}^{2}+$ $x_{2}^{2}+x_{3}^{2}=1$ in \mathbb{R}^{3}, oriented by the outward normal, at $p=(0,0,1)$.

OR

B (a). For each 1-form ω on $U\left(U\right.$ open in $\left.\mathbb{R}^{n+1}\right)$ there exist unique functions $f_{i}: U \longrightarrow$ $\mathbb{R}(i \in\{1,2, \cdots, n+1\})$ such that $\omega=\sum_{i=1}^{n+1} f_{i} d x_{i}$. Moreover, ω is smooth if and only if each f_{i} is smooth.
(b). Find the Guassian curvature of a cylinder over a plane curve.
$(5 \times 12=60)$

