UNIVERSITY OF KERALA

Career-related First Degree program Under Choice Based Credit and Semester (CBCS) System

Group 2 (b)
BIOTECHNOLOGY

Botany/ Zoology, Chemistry & Biotechnology

Course structure and Syllabus

kup /2019
Foreword

The Board of Studies in Biotechnology (Pass) of the University of Kerala decided to revise the syllabus of the Biotechnology UG courses with effect from the academic year 2019-20 as part of its continued efforts to provide the latest information to the students. Accordingly, the Board of studies in Biotechnology held series of discussions and a workshop of two days duration involving representatives of the colleges offering B. Sc. courses in Biotechnology under the University of Kerala during 27th and 28th September 2018 at the Seminar Hall, Department of Botany, University of Kerala, Kariavattom. A total of 25 teachers from 12 different Colleges offering the two courses participated in the workshop. After detailed deliberations and incorporating the suggestions of experts such as Dr. G. M. Nair, Chairman, Kerala Biotechnology Commission, Dr. Suhara Beevy, Head, Dept. of Botany, Univ. of Kerala, the syllabus was revised. The existing syllabi were updated by addition relevant information contents and online resources. The various directions of UGC and University of Kerala regarding courses on Disaster Management, Informatics, Environmental Studies etc were discussed and included in the syllabus in the appropriate places. The following BOS members functioned as coordinators of the two streams:

Dr. P. S. Jairani - Group 2 (b); BIOTECHNOLOGY (Multi-major)

Dr. R. Dinesh Raj - Group 2 (a); BOTANY & BIOTECHNOLOGY

The syllabi, prepared by the teachers and compiled by the coordinators were circulated among the participants and others from all the colleges offering the courses by Email/WhatsApp and feedback incorporated. The draft syllabus was discussed and approved by the Board of Studies held on 10th January 2019. The Chairman and Members of the Board of Studies would like to place on record their gratitude to the entire faculty who took part in the discussion and contributed to the design of the syllabus, which will be effective from the academic year 2019-20. The Chairman places on record his deep sense of appreciation to the Registrar, Head, Department of Botany, University of Kerala, Members of Board of Studies in Biotechnology (Pass), especially Dr. A. Gangaprasad, office staff of the Department of Botany, University of Kerala, the teachers who participated in the workshop and all the administrative staff of the University Academic and Audit Sections and Department of Botany for their timely help and directions. Comments & suggestions for improvement are welcome.

Thiruvananthapuram
08-02-2019

Dr. G. Nagendra Prabhu
Chairman, BOS in Biotechnology (Pass)
Aim and Objective

The Career related first degree programme in Group 2(b) Biotechnology as one of the core subjects is designed to develop a scientific attitude and an interest towards the modern areas of biotechnology in particular and life science in general. It will help the students to become critical and curious in their outlook. The courses are designed to impart the essential basics in chemistry, Botany, Zoology and Biotechnology. There are two foundation courses, one is focused on the modern information technology, statistics and its application in modern life sciences, and a general introduction and awareness on Biotechnology and its influence in human life.

The various courses in the programme is aimed to develop proficiency in the theory as well as practical experiments, common equipments, laboratory, along with the collection and interpretation and presentation of scientific data in proper manner. In addition to this, the students will be equipped with knowledge in the modern areas of biotechnology and its application in medical science, agriculture, industry, proteomics, genomics, metabolomics, bioinformatics, nanobiotechnology etc. Apart from understanding biotechnology and its power in developing the nation, it will create awareness about biotechnology and will help in eliminating public fear about the contribution of biotechnology and confusion on GM crops, GM foods and transgenic organisms. Students, who pursue this programme and pass out successfully, will surely have an urge to continue higher studies in Biotechnology and contribute significantly in its development.

The total minimum credit of the programme is 120 and the various courses and its corresponding credits are depicted in the following table.

Summary of Courses

<table>
<thead>
<tr>
<th>Study Components</th>
<th>No. of course</th>
<th>Credits/course</th>
<th>Max/Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Languages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 English</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 Foundation Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Methodology and Perspective of Biotechnology</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2 Biophysics and Instrumentation</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3 Complementary Courses (Botany / Zoology)</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Phycology, Mycology, Lichenology, Bryology Peridology, Gymnosperms and Plant Pathology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Plant Physiology, Angiosperm Anatomy & Reproductive Botany</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Angiosperm Morphology and Systematic Botany</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Practical COMP II (Practical of 1, 2 & 3)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>No. of Credits/</td>
<td>Max/</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>course</td>
<td>course</td>
<td>Total Credits</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>Zoology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Animal Diversity- Non-Chordata & Chordata</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Animal Physiology & Anatomy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Developmental Biology, Human Genetics & Applied Zoology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Practical COMP II (Practical of 1, 2 & 3)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Core Courses (Botany / Zoology, Chemistry & Biotechnology)</td>
<td>32</td>
<td>2-4</td>
<td>90</td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Microtechnique, Angiosperm Anatomy, Reproductive botany</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Environmental Studies</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Practical Botany-I (Practical of 1 & 2)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Phycology, Mycology, Lichenology & Plant Pathology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Bryology, Pteridology, Gymnosperms & Paleobotany</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Plant Physiology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Cell Biology, Plant breeding & Evolutionary Biology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Practical Botany-II (Practical of 4, 5, 6 & 7)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Angiosperm Morphology & Systematic Botany, Economic Botany, Ethnobotany & medicinal botany</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10 Genetics</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Practical Botany-III (Practical of 9, 10 & 11)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Animal Diversity I- Non-Chordata</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Environmental Studies</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Practical Zoology-I (Practical of 1 & 2)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Developmental Biology & Reproductive Biology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Animal Diversity II- Chordata</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Animal Physiology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Cell Biology</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Practical Zoology-II (Practical of 4, 5, 6 & 7)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Systematics, Biodiversity & Animal Behaviour</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Genetics</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Evolution</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Practical Zoology-III (Practical of 9, 10 & 11)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Components</td>
<td>No. of course</td>
<td>Credits/course</td>
<td>Max/Total Credits</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9</td>
<td>2-4</td>
<td>28</td>
</tr>
<tr>
<td>1 Inorganic Chemistry-I</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2 Inorganic Chemistry-II</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 Practical Chemistry –I (Practical of 1 & 2)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 Physical Chemistry-I</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5 Physical Chemistry II</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6 Practical Chemistry-II (Practical of 4 & 5)</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7 Organic Chemistry-I</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8 Organic Chemistry-II</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9 Practical Chemistry-III (Practical of 7 & 8)</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>11</td>
<td>2-4</td>
<td>31</td>
</tr>
<tr>
<td>1 Biochemistry & Metabolism</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2 Microbiology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 Biotechniques –I (Practical of 1 & 2)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 Food and Industrial Biotechnology</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5 Molecular Biology</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6 Immunology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7 Recombinant DNA Technology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8 Biotechniques –II (Practical of 4, 5, 6 & 7)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9 Environmental Biotechnology</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10 Plant Biotechnology and Animal Biotechnology</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11 Biotechniques –III (Practical of 9 & 10)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Open Course (Semester V)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective Courses of Core (Semester VI)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Horticulture</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 Mushroom cultivation & marketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Forestry (One of the Three Elective Courses as per the syllabus of BSc Botany)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Zoology-Vermiculture and Apiculture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornamental freshwater fish production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Nutrition (One of the Three Elective Courses as per the syllabus of B.Sc. Zoology)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open (Semester V) / Elective Courses (Semester VI)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1 Bioinformatics and Nanobiotechnology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2 Food & Dairy Biotechnology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 Genetic Engineering</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 Basics of Environmental Biotechnology</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6 Project</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

T- Theory: P- Practical
Course structure and syllabus of Career Related First Degree in Biotechnology (2b) as per the regulations of CBCS

The Career related first degree programme in Group 2(b) Biotechnology as one of the core subjects, consists of a total of 57 courses distributed in six categories. They are Language courses, Foundation courses, Complementary courses, Core courses, Open course of core subjects, and a Project. The project is compulsory and the students may be assigned a topic for the project in the 5th semester itself and should be completed and submitted during the practical assessment at the end of 6th semester.

There are two programmes within the group 2(b) of the career related First Degree Programme, which differ in one of the core subjects and complementary Courses. In one Programme one of the core subjects is Botany and its complementary courses will be from Zoology; and in the second programme one of the core subjects is Zoology and its Complementary courses are from Botany.

Each course title is represented by a course code consisting of a two letter subject code followed by four digits. The first digit indicates the first degree programme, which is always one. The second digit indicated the semester number which is 1-6, the 3rd digit denotes the category of the course which ranges from 1-6, since there are six categories and the last digit indicates the serial number of the course within a semester. But in the case of Botany and Zoology, which are optional core courses, the course code consists of a 5th digit- .1 to denote the courses for optional botany and .2 for optional Zoology. The following are the category of courses included in this first degree programme of 2(b) group.

The subject code is BV (Biotechnology Vocational)

1. Language
2. Foundation course subject
3. Complementary courses
4. Core Courses
5. Open course
6. Elective course for Core
23 Project

CHOICE OF ELECTIVE COURSES

Students of Biotechnology should take up Two Internal Elective courses during the Sixth semester as given below:

First Elective (All students)

One Elective course from Biotechnology

Second Elective

a) Students of Botany, Chemistry, Biotechnology: One elective course from Botany
b) Students of Zoology, Chemistry, Biotechnology: One Elective course from Zoology

Note

To Govt. College Kariavattom, Thiruvananthapuram

Course BV1143 Biochemistry and Metabolism of Core subject Biotechnology may be handled by faculty from Biochemistry Department, in the Govt. College Kariavattom, as it has been handled by them previously. This is applicable only in the Govt.College, Kariavattom, Thiruvananthapuram.
Course Structure

Biotechnology (Multimajor)

Botany, Chemistry & Biotechnology

Semester I

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN1111</td>
<td>English</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1121</td>
<td>Methodology and Perspective of Biotechnology</td>
<td>4</td>
<td>72</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1131.1</td>
<td>Animal Diversity- Non-Chordata & Chordata</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1141.1</td>
<td>Microtechnique, Angiosperm anatomy, Reproductive botany and Palynology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1142</td>
<td>Inorganic Chemistry-I</td>
<td>5</td>
<td>90</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1143</td>
<td>Biochemistry & Metabolism</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>6</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>540</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hrs: CH- 7, BO-8 (Core 5 + Compl. 3), BT- (BC) 9+4, EN-2 = 30

Semester II

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN1211</td>
<td>English</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1221</td>
<td>Biophysics and Instrumentation</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1231.1</td>
<td>Animal Physiology & Anatomy</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1241.1</td>
<td>Environmental Studies</td>
<td>4</td>
<td>72</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1242.1</td>
<td>Practical Botany I (Practical of BV1141.1, BV1241.1)</td>
<td></td>
<td></td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1243</td>
<td>Inorganic Chemistry –II</td>
<td>6</td>
<td>108</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>3</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1244</td>
<td>Practical Chemistry-I (Practical of BV1142 & BV1243)</td>
<td></td>
<td></td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1245</td>
<td>Microbiology</td>
<td>4</td>
<td>72</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>3</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1246</td>
<td>Biotechniques-I (Practical of BV1143 & BV1245)</td>
<td></td>
<td></td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>540</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hrs: CH-9, BO- 9 (core 6 + compl. 3), BT- 10, EN-2= 30
Semester III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1331.1</td>
<td>Developmental Biology, Human Genetics & Animal behaviour</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1341.1</td>
<td>Phycology, Mycology, Lichenology & Phytopathology</td>
<td>2</td>
<td>36</td>
<td>3</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1341.1</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1342.1</td>
<td>Bryology, Pteridology, Gymnosperms & Paleobotany</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1342.1</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1343</td>
<td>Physical chemistry-I</td>
<td>7</td>
<td>126</td>
<td>4</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1343</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1344</td>
<td>Food and Industrial Biotechnology</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1344</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1345</td>
<td>Molecular Biology</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1345</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>540</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hrs: CH- 10, BO- 10 (core 7 + compl. 3), BT- 10, = 30

Semester IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1431.1</td>
<td>Practical COMP (Practical of BV1131.1, BV1231.1 & BV1331.1)</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1441.1</td>
<td>Plant Physiology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1442.1</td>
<td>Cell Biology, Plant breeding & Evolutionary Biology</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1443.1</td>
<td>Practical Botany-II (Practical of BV1341.1, BV1342.1, BV1441.1 & BV1442.1)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1444</td>
<td>Physical chemistry-II</td>
<td>7</td>
<td>126</td>
<td>3</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1444</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1445</td>
<td>Practical Chemistry II (Practical of BV1343 & BV1444)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1446</td>
<td>Recombinant DNA Technology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1446</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1447</td>
<td>Immunology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1447</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1448</td>
<td>Biotechniques II (Practical of BV-1344, BV1345, BV1446 & BV1447)</td>
<td></td>
<td></td>
<td>2</td>
<td>3 Hrs.</td>
<td>CE 20, ESE 80</td>
</tr>
<tr>
<td>BV1448</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>540</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hrs: CH-10, BO- 10 (core 7 + compl. 3), BT-10 = 30
Semester V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
<th>CE</th>
<th>ESE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1541.1</td>
<td>Angiosperm Morphology & Systematic Botany</td>
<td>4</td>
<td>72</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1542.1</td>
<td>Economic Botany, Ethnobotany & Medicinal Botany</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1543</td>
<td>Organic chemistry-I</td>
<td>6</td>
<td>108</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>4</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1544</td>
<td>Environmental Biotechnology</td>
<td>2</td>
<td>36</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV-1545</td>
<td>Plant Biotechnology & Animal Biotechnology</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1551</td>
<td>Bioinformatics</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BV 1552</td>
<td>Food and Dairy Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV 1553</td>
<td>Genetic Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV 1554</td>
<td>Basics of Environmental Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Any one course shall be offered as open course for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-Biotechnology students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>540</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CH-10, BO-10, BT-(7 +OC-3) – 10 = Total = 30

Semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
<th>CE</th>
<th>ESE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1641.1</td>
<td>Genetics</td>
<td>5</td>
<td>90</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV 1642.1</td>
<td>Horticulture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV 1643.1</td>
<td>Mushroom cultivation & Marketing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV 1644.1</td>
<td>Forestry</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BV1642.1</td>
<td>Practical Botany III (Practical of BV1541.1, BV1542.1 & BV1641.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1643</td>
<td>Organic Chemistry-II</td>
<td>7</td>
<td>126</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>3</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1644</td>
<td>Practical Chemistry-III (Practical of BV1543 & BV1643)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTIVE COURSE IN BIOTECHNOLOGY (Any one out of the three courses)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Contact Hrs/Week</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam Hrs</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1648</td>
<td>Bioinformatics & Nano Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1649</td>
<td>Food and Dairy Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1650</td>
<td>Genetic Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1651</td>
<td>Biotechniques III (Practical of BV1544 & BV1545)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1661</td>
<td>Project</td>
<td></td>
<td></td>
<td></td>
<td>Viva-voce</td>
<td></td>
</tr>
</tbody>
</table>

Total

| | 30 | 540 | 20 |

CH-10, BO-10, BT-10 (5+ Project-5) = 30

Course Structure

Career Related First Degree Programme

Group 2(b)

Biotechnology (Multimajor)

Zoology, Chemistry & Biotechnology

Semester I

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam Hrs</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN1111</td>
<td>English</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1121</td>
<td>Methodology and Perspective of Biotechnology</td>
<td>4</td>
<td>72</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1131.2</td>
<td>Phycology Mycology, Lichenology, Bryology, Pteridology, Gymnosperms and Plant Pathology</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1141.2</td>
<td>Animal Diversity I- Non-Chordata</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1142</td>
<td>Practical Zoology-I</td>
<td>2</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BV1143</td>
<td>Inorganic Chemistry-I</td>
<td>5</td>
<td>90</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1143</td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1143</td>
<td>Biochemistry & Metabolism</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1143</td>
<td>Practical</td>
<td>6</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

| | 30 | 540 | 18 |

CH- 7, ZO- 8 (5+Comp. 3), BT- 9(BC) + 4, EN-2 = 30
Semester II

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1211</td>
<td>English</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1221</td>
<td>Biophysics and Instrumentation</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1231.2</td>
<td>Practical</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1241.2</td>
<td>Plant Physiology, Angiosperm Anatomy & Reproductive Botany</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1241.2</td>
<td>Environmental Studies</td>
<td>4</td>
<td>72</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1242.2</td>
<td>Practical Zoology-I (Practical of BV1141.2, BV1241.2)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1243</td>
<td>Inorganic Chemistry –II</td>
<td>6</td>
<td>108</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1244</td>
<td>Practical Chemistry-I (Practical of BV1142 & BV1243)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1245</td>
<td>Microbiology</td>
<td>4</td>
<td>72</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1246</td>
<td>Biotechniques-I (Practical of BV1143 & BV1245)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
</tbody>
</table>

Total Hrs: CH-9, ZO- 9(6+Comp 3), BT- 10, EN-2= 30

Semester III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1331.2</td>
<td>Angiosperm Morphology, Systematic Botany &Economic Botany</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1341.2</td>
<td>Developmental Biology & Reproductive Biology</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1342.2</td>
<td>Animal Diversity –II: Chordata</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1343</td>
<td>Physical chemistry-I</td>
<td>7</td>
<td>126</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1344</td>
<td>Food and Industrial Biotechnology</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1345</td>
<td>Molecular Biology</td>
<td>3</td>
<td>54</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1346</td>
<td>Practical</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hrs: CH- 10, ZO- 10(7+ Comp 3), BT- 10, = 30
Semester IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1431.2</td>
<td>Practical COMP (Practical of BV1311.2, BV1231.2 & BV1331.2)</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1441.2</td>
<td>Animal Physiology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1442.2</td>
<td>Cell Biology</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1443.2</td>
<td>Practical Zoology-II (Practical of BV1341.2, BV1342.2, BV1441.2, BV1442.2)</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1444</td>
<td>Physical chemistry-II</td>
<td>7</td>
<td>126</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1445</td>
<td>Practical Chemistry II (Practical of BV1344 & BV1444)</td>
<td>2</td>
<td>3</td>
<td></td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1446</td>
<td>Recombinant DNA Technology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1447</td>
<td>Immunology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1448</td>
<td>Biotechniques II (Practical of BV1344, BV1345, BV1446, BV1447)</td>
<td>2</td>
<td>3</td>
<td></td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
</tbody>
</table>

Total Hrs: CH-10, ZO-10 (7 + Comp. 3), BT-10 = 30

Semester V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1541.2</td>
<td>Systematics, Biodiversity & Animal Behaviour</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1542.2</td>
<td>Genetics</td>
<td>5</td>
<td>90</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1543</td>
<td>Practical Zoology-III</td>
<td>2</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BV1544</td>
<td>Organic chemistry-I</td>
<td>6</td>
<td>108</td>
<td>4</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1545</td>
<td>Environmental Biotechnology</td>
<td>2</td>
<td>36</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV-1545</td>
<td>Plant Biotechnology & Animal Biotechnology</td>
<td>1</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Open Courses for non-Biotechnology students:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1551</td>
<td>Bioinformatics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1552</td>
<td>Food and Dairy Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1553</td>
<td>Genetic Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1554</td>
<td>Basics of Environmental Biotechnology (Any one course shall be offered as an</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td></td>
<td>Open course for non-Biotechnology students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 30 540 20

Total Hrs: CH-10, ZO-10 (7+OC-3) = 30
Semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Contact Hrs/Week</th>
<th>Total contact Hrs</th>
<th>Credits</th>
<th>Duration of University Exam</th>
<th>Marks for Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV1641.2</td>
<td>Evolution</td>
<td>5</td>
<td>90</td>
<td>2</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1642.2</td>
<td>Practical Zoology-III (Practical of BV1541.2, BV1542.2 & BV1641.2)</td>
<td>2</td>
<td>36</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1643</td>
<td>Organic Chemistry-II</td>
<td>7</td>
<td>126</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
<tr>
<td>BV1644</td>
<td>Practical Chemistry-III (Practical of BV1543 & BV1643)</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3 Hrs.</td>
<td>20 80</td>
</tr>
</tbody>
</table>

ELECTIVE COURSE IN ZOOLOGY

- BV1661.1 Economic Zoology – Vermiculture and Apiculture
- BV1661.2 Ornamental Fresh water fish production
- BV1661.3 HUMAN NUTRITION
 - 3 54 2 3Hrs 20 80

ELECTIVE COURSE IN BIOTECHNOLOGY

- BV1648 Bioinformatics & Nano-Biotechnology
- BV1649 Food and Dairy Biotechnology
- BV1650 Genetic Engineering
 - 3 54 2 3 Hrs. 20 80
- BV1645 Biotechniques III (Practical of BV1544 & BV1545)
 - 2 36 2 3 Hrs. 20 80
- BV1661 Project
 - 5 90 3 Viva- voce 20 80

Total 30 540 20

CH-10, ZO- 10(7+ EC-3), BT- 5 + Project-5 = 30

Distribution of Teaching Hrs. for the Major Subjects – Botany / Zoology, Biotechnology and Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>I S</th>
<th>II S</th>
<th>III S</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BT</td>
<td>9+4</td>
<td>7+3</td>
<td>10</td>
<td>10</td>
<td>7+3</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>BO/ZO</td>
<td>5+3</td>
<td>6+3</td>
<td>10 (7+3)</td>
<td>10</td>
<td>7+3</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>CH</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>FC</td>
<td>(4)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC/EC</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>180</td>
</tr>
</tbody>
</table>
FOUNDATION COURSES

SEMESTER I

Foundation Course I

BV 1121 Methodology and Perspective of Biotechnology

Credits 3 Contact hours - 72

Aim of the course

The aim is to introduce the modern scientific methods and to familiarize biotechnology and its various applications in various fields of human life.

Course outcome

The students will be able to understand how science works. They will learn how to apply statistics and IT in Biological science. They will receive a general awareness about biotechnology and its application in various fields for the betterment of mankind.

Module I

Science and Scientific studies 6 hrs

Types of knowledge: practical, theoretical and scientific knowledge. Information. What is science and what is not science, science vocabulary and science disciplines. Revolution in science

Experimentation in Science 12 hrs

Design of an experiment- Observation: Types of observations, direct and indirect observations, controlled and uncontrolled observations, human and machine observations, data collection; interpretation and deduction. Necessity of units and dimensions, repeatability and replication.

Types of experiments, Experiments to test a hypothesis, to measure a variable, to gather data, Documentation of experiments, record keeping.

Planning of experiments: Design, selection of controls, observational requirements, and instrumental requirements, Scientific instruments (only an introduction of the instruments required)

Historical development and evolution of scientific instruments, accuracy, precision and errors, Robotics.

Module II

Data handling in science and Biostatistics 12 hrs

Types of Data- typical examples, data interpretation, collection of data: primary and secondary data, classification and tabulation, graphical and diagrammatic representation, significance of statistical methods in biological investigations, p-value.

Sampling techniques, statistical evaluation of results, probability theory, Probability calculation, variables in biological data, standard distribution with important properties, simple problems involving binomial, Poisson and normal variables, methods of sampling, confidence level, idea of sampling, distribution, standard deviation (SD) and standard error (SE), measurement of dispersion, basic idea of significance test, hypothesis testing, level of significance, Scientific writing

Module III
Overview of Information of Technology 12 hrs

Features of modern personal computers and peripherals, computer networks and Internet, internet as knowledge repository, Introduction to mobile phone technology and ATM, Purchase of technology-license, guarantee, warrantee, Overview of Operating systems and major application software. Academic search techniques, use of IT in teaching and learning- educational softwares, INFLIBNET, NICNET, BRNET-academic services.

Social Informatics 6 hrs

IT and Society, creating your cyber presence. Cyber ethics, cyber crime, security privacy issues, Overview of IT- application in medicine, healthcare, Business, Commerce, Industry, Defense, Law, crime detection, publishing, communication, resource management, weather forecasting, education, film and media, Introduction to Scilab and Matlab

Module IV

Origin and development of Biotechnology- 6 hrs

Introduction and definitions, Historic perspectives- microorganisms and fermentation, Origin of genetics, DNA and genetic Engineering (general account only)– definition and tools of genetic engineering, Classical and modern concepts of Biotechnology, Scope and Commercial potential of Biotechnology, Biotechnology in India and its global trends, Major Biotechnology institutes and companies in India.

Application of biotechnology 12 hrs

Industrial Biotechnology- Bioprocess and Fermentation Technology
Environmental Biotechnology-Biological fuel generation, Single cell protein, sewage and Effluent treatment
Medical Biotechnology- safer and cheaper medicines by biotechnology, antibiotics, medicines from cell cultures, new medicines through genetic engineering, Biopharming, Hybridoma technology
Agriculture Biotechnology- Traditional methods of Crop improvement, Crop improvement through Biotechnology, GM crops- Herbicide tolerance, Insect resistance, Virus resistance
Animal Biotechnology - Genetically modified Livestock and poultry
Food and Beverage Biotechnology- application of biotechnology in food processing, Traditional and modern food processing –cheese, curd, bread, wine

Module V

Safety and Ethics in Biotechnology- 6 hrs

Good Laboratory Practices (GLP), Good manufacturing Practices (GMP), Quality control in manufacturing, Marketing of Biotechnology Products. Impact of Biotechnology on Society, IPR and Patents in Biotechnology- basic concepts of IPR, patents and copyrights, plagiarism.

Suggested Reading

4. Biotechnology: Issues, Ethics and Regulations, Tina M. Prow, Communications Specialist, Office of Agricultural Communications and Education.
8. Fundamentals of Information Technology, Alexis and Mathew Leon., Leon Vikas
9. Introduction to Genetic Engineering & biotechn9ology, Nair, A.J., Infinity Science Press, USA.
10. Introduction to Information Technology, V. Rajaraman, Prentice Hall.

SEMESTER II

Foundation Course II

BV1221 Biophysics & Instrumentation

Credits- 2

Contact hours 54 (Theory 36 + Practical 18)

Aim of the course

The aim is to introduce the physical aspects and bioenergetics of the living system and to familiarize the principle and working of various instruments used in biotechnology experiments.

Course outcome

The students will be able to understand the fundamentals of biophysics and the general instrumentation techniques used in biotechnology.

Module I

Principles of thermodynamics: 6 hrs
Laws of conservation of energy- first and second laws and its relevance in the biological system, entropy and enthalpy, Gibbs free energy, bioenergetics- endothermic and exothermic reactions of biological systems, energy change in the biochemical reactions, sources of heat limits to temperature, heat dissipation and conservation.

Electrical properties of biological compartments: 4 hrs
Electricity as a potential signal, electrochemical gradients, membrane potential, ATP synthesis, and chemi-osmotic hypothesis
Module II

Biophysics of Photosynthesis

Primary events in photosynthesis, light harvesting pigments, resonance energy transfer in photosynthetic pigments, fluorescence and phosphorescence, absorption spectra and action spectra of photosynthetic pigments, photosynthetic reaction center and accessory pigments, light reception in microbes, plants and animals

Biophysics of Vision, Muscle movements and Hearing:

Mechanism of vision, muscular movements and hearing, correction of vision faults, generation and reception of sonic vibrations, hearing aids.

Intra and intermolecular interactions in biological systems:

Various types of molecular interactions, inter and intra molecular interactions, special and charge compatibility in molecular interactions.

Module III

Microscopy:

Principle of Microscopy, various types of Microscopy- Simple, phase contrast, fluorescence and electron microscopy (TEM and SEM), Modern developments in Microscopy.

Basic principles and working of instruments:

pH meter, spectrophotometer (UV and Visible) and colorimeter- Beer-Lambert law, Brief account of densitometry, fluorimetry, manometry, polarography, centrifugation, atomic absorption spectroscopy, IR, NMR and X-ray crystallography and Mass spectrometry.

Electrophoresis:

Principle of electrophoresis, native gel electrophoresis, SDS electrophoresis, immuno electrophoresis, isoelectric focusing, polymerization of acrylamide and bis-acrylamide, electrophoresis in agarose gel and Submarine electrophoresis

Isotopes and radioisotopes:

Isotopes and radioisotopes, radiations- ionizing radiations, Application of isotopes and radioisotopes in biological research, radioisotope tracer technique and autoradiography.

Practicals-

Familiarizing the working of the following instruments

23 pH Meter – Use of pH Meter, Familiarization of the instrument and Preparation Phosphate buffers and determination of pH.
24 Spectrophotometer – Familiarization of the working of the instrument , Quantitative estimation of Sugars by Dinitrosalysilic acid and Proteins by Lowry’s Method
25 Development of absorption spectra of chlorophyll or any other biological sample
26 Electrophoresis – demonstration of PAGE and Agarose Gel Electrophoresis

Suggested Readings
Complementary Courses in Zoology for Botany, Chemistry & Biotechnology

SEMESTER I

Complementary Course I

BV-1131.1 Animal Diversity- Non Chordata & Chordata

Credits: 3

Aim and Objective

This course is aimed to communicate a basic understanding about the biodiversity of animals and its systematic position. It should give very good information about the morphological diversity and adaptation of the animal world. It should also provide basic information about the animal resources of the globe.

Module I

KINGDOM PROTISTA

General features

Plasmodium (detailed study of life history and pathogenicity)

eg. *Entamoeba, Noctiluca, Trichonympha, Paramecium*

Module II

KINGDOM ANIMALIA

Salient features

Phylum Porifera

General characters

e.g. *Sycon*

Phylum Cnidaria (Coelenterata)

General characters

Class Hydrozoa: *Obelia* (structure of colony and medusa, polymorphism and alternation of generation)

Class Scyphozoa: e.g. *Aurelia*

Class Anthozoa: e.g. sea anemone

Module III

Phylum Platyhelminthes

General characters

Class Turbellaria: e.g. *Bipalium*
ss Cestoda: e.g. *Taenia solium*
Class Trematoda; e.g. *Fasciola*

Phylum Nematoda

General characters
- e.g. *Ascaris*

Human nematode parasites (*Ascaris, Ancylostoma, Wuchereria, Enterobius*)

Phylum Annelida

General characters
- Class Polychaeta: e.g. *Nereis* (mention parapodium and heteronereis)
- Class Oligochaeta; e.g. earthworm
- Class Hirudinea: e.g. *Hirudunaria*

Module IV

12 Hours
Phylum Arthropoda

General characters
Type: *Penaeus*
Class Crustacea: *Sacculina*
Class Myriapoda: e.g. *Scolopendra*
Class Insecta: e.g. Cockroach (external features, mouth parts and digestive system); mosquitoes (*Anopheles, Culex* and *Aedes)*.

Module V

Phylum Mollusca

General characters
Class Polyplacophora: e.g. *Chiton*
Class Scaphopoda: e.g. *Dentalium*
Class Pelecypoda (Bivalvia): e.g. freshwater mussel, *Perna* and pearl oyster
Class Gastropoda: e.g. *Pila*
Class Cephalopoda: e.g. *Sepia*

Pearl culture
Phylum Echinodermata
General characters
Class Asteroidea: e.g. star fish
Class Ophiuroidea: e.g. brittle star
Class Echinoidea: e.g. sea urchin
Class Holothuroidea: e.g. sea cucumber
Class Crinoidea: e.g. sea lily

Module VI

CHORDATA

Diagnostic characters and salient features of the phylum Chordata.

Subphylum Urochordata: General characters
 e.g. Ascidia (morphology and retrogressive metamorphosis)

Subphylum Cephalochordata: General characters; e.g. Amphioxus

Subphylum Vertebrata- General characters

Superclass Agnatha: e.g. Petromyzon

Superclass Pisces: e.g. Scoliodon, Euproplus, Anguilla, Echeneis, mackerel and sardine.

Superclass Tetrapoda

Class Amphibia- General characters
 e.g. Rana, Ichthyophis, Amblystoma and axolotl larva

Class Reptilia
 General characters
 e.g. Calotes, Draco, Chameleon and Chelone
 Snakes: (1) Non-poisonous snakes: e.g. Lycodon and Ptyas;
 (2) Poisonous snakes: e.g. Naja, Viper, Bungarus and Enhydrina Identification of
 non-poisonous and poisonous snakes

Class Aves
 General characters
 Flightless birds: e.g. Ostrich and Kiwi
 Flying birds: e.g. Pigeon (mention different types of feathers)
 Flight adaptations of birds

Class Mammalia
 General characters
 Homo sapiens: Detailed study of anatomy (exclude skeleton, arteries and veins)
 e.g. Echidna, kangaroo, bat, loris, tiger and whale
 Adaptations of aquatic mammals
Suggested readings

2. Chaudhury, S.K. *Concise Medical Physiology*, NCBA.
7. Guyton and Hall *A Textbook of Medical Physiology*.

SEMESTER II

Complementary Course II

BV-1231.1 Animal Physiology & Anatomy

Credits: 3

Contact Hours: 54

Aim and Objective

This course is to provide the students with the basic information on the general physiology of animals.

Module I

18 hours

Nutrition

Types of Nutrition – autotrophy and heterotrophy; outline classification of food components; brief mention of malnutrition disorders.

Vitamins - physiological role and disorders (deficiency diseases).

Respiration

Respiratory pigments and their functions with special emphasis on haemoglobin; transport of oxygen and carbon dioxide; neural and hormonal control of respiration in man; respiratory disturbances – very brief mention of apnoea, dyspnoea, hypoxia, hypocapnia and hypercapnia, asphyxia and carbon monoxide poisoning. Smoking and its physiological effects.

Circulation

Blood - composition and functions; blood groups: mechanism of blood clotting (intrinsic and extrinsic pathways); anticoagulants; disorders of blood clotting (haemophilia and thrombosis). Heart (neurogenic and myogenic); heart beat; pace maker; blood pressure; ECG; angiogram and angioplasty. Cardiovascular disorders (hypertension, arteriosclerosis and myocardial infarction).
Module II

Excretion and Osmoregulation

Classification of animals based on excretory wastes; human nephron – structure and urine formation (ultrafiltration, selective reabsorption, tubular secretion and countercurrent mechanism); hormonal control of renal function; composition of urine; kidney diseases (proteinuria, uremia, acidosis and alkalosis). Dialysis and artificial kidney

Muscle Physiology

Striated, non-striated and cardiac muscle; ultrastructure of a striated muscle fibre; mechanism of muscle contraction; latent and refractory periods; muscle twitch, summation, tetanus and tonus; all or none law; fatigue and rigor mortis.

Module III

Nerve Physiology

Neuron – structure; nerve impulse and its transmission; synapse and synaptic transmission; all or none law; refractory period; neurotransmitters; saltatory transmission; EEG.

Endocrinology

Various endocrine glands and their corresponding hormones. Very brief description of hormonal influence/ action and hormonal disorders such as goitre, cretinism, exophthalmic goitre, diabetes mellitus, diabetes insipidus, dwarfism, gigantism, and acromegaly. Hormonal disorders in man.

Suggested Readings

5. Hoar, W.S. General and Comparative Physiology. Prentice Hall
8. Schmidt-Nielson, K. Animal Physiology. PHI

SEMESTER III

Complementary Course III

BV-1331.1 Developmental Biology, Human Genetics and Animal Behaviour

Credits: 3

Contact Hours: 54

Aim and Objective

This complementary course will help to develop general understanding on animal development, human genetics and animal behaviour for non-zoology students.

Module I

DEVELOPMENTAL BIOLOGY

Module II 18 hours

HUMAN GENETICS

Module III 18 hours

ANIMAL BEHAVIOUR

Stimulus and Response: Stimulus-response theory; stimulus filtering; fixed action pattern; innate releasing mechanism; sign stimulus and social signals (social releasers). Instinctive behaviour: definition; characteristics of instinctive behaviour; comparison of instinct and learning; adaptive advantage. Learning: types of learning; habituation; reflexes, latent learning, insight learning and imprinting; physiology of learning. Motivation: goal oriented behaviour and drive; (models of motivation not required). Sociobiology: social groups – merits and demerits; properties of societies; Societies in honey bee and elephants. Pheromones: types of pheromones; chemical nature of pheromones; human pheromones.

Suggested Readings

Developmental Biology

2. Balinsky, B.I. An Introduction to Embryology. 5E. Thomson Books/cole
4. Majumdar, N.N. Textbook of Vertebrate Embryology. TMH

Genetics

Animal Behaviour

9. Wood Gush, D.G.M. Elements of Ethology

SEMESTER IV

Complementary Course IV

BV-1431.1 Practical COMP

Credits: 3 Contact hours: 54

Aim and Objective

This course is to introduce and train the students on the practical components of the theory courses which were covered in the previous semesters.

Animal Diversity

Study of specimens

1. Protista : Noctiluca, Paramecium, Entamoeba, Trichonympha (any 2)
2. Porifera : Sycon
3. Cnidaria : Obelia, Aurelia, sea anemone (Adamsia)
23. Platyhelminthes: Bipalium, Fasciola, Taenia solium
5. Nematoda : Ascaris (male and female)
6. Annelida : Nereis, Hirudinaria
7. Arthropoda : Limulus, Scorpion, Scolopendra, Sacculina, Leptocorisa, Oryctes, larval stages of prawn (any 5)
8. Mollusca : Freshwater mussel, Sepia, Pila
23. Echinodermata : starfish, sea urchin, brittle star, sea cucumber, sea lily (any 3)
24. Chordates : Amphioxus (entire), Ascidia Petromyzon
23. Scoliodon, Narcine, Echeneis, Hippocampus, Anguilla (any 3)
24. Ichthyophis, Amblystoma, axolotl larva, Rhacophorus (any 2)
25. Chameleon, Bungarus, Naja, Vipera, Chelone (any 3)
26. Pigeon – different types of feathers
27. Pteropus
Mounting (Minor) [any three]
1. Earthworm – setae (in situ)
2. *Nereis* – Parapodium
3. *Panaeus* – Appendages
4. Shark – Placoid scale

Dissection (Major) [any two]
1. Earthworm – Digestive system
2. *Penaeus* – Nervous system
3. Cockroach – Digestive system (Alimentary canal and salivary apparatus)

Animal Physiology
23 Preparation of human blood smear to study different types of leucocytes.
24 Human blood grouping: ABO and Rh systems.
25 Urine analysis for abnormal constituents: albumin and glucose.

Developmental Biology
Study of slides/models of different types of eggs, blastula and gastrula.

Human Genetics
1. Study of normal human karyotype.
2. Study of abnormal human karyotypes (Klinefelter, Turner, Down syndromes)

Applied Zoology
0 Study of beneficial insects: *Apis* (worker, drone and queen), *Bombyx* (life cycle, silk) Study of the following items of economic importance: *Perna, Pinctada, Penaeus, Sardinella, Rastrelliger*
Complementary Courses in Botany

For Zoology, Chemistry & Biotechnology

Semester I

BV1131.2 Phycology Mycology, Lichenology, Bryology Pteridology,
Gymnosperms and Plant Pathology

Credits: 3 Contact hours: 54

Module I

Phycology

Salient features of the following major groups with reference to the structure, reproduction and life cycle of the types given below (Excluding the developmental details) –

a. Cyanophyceae - Nostoc
b. Chlorophyceae - Chlorella, Oedogonium and Chara
c. Phaeophyceae - Sargassum
d. Rhodophyceae – Polysiphonia

Module II

Mycology

Characteristic features of the following major groups with reference to the structure, reproduction and life cycle of the types given below (Excluding the developmental details) –

a. Zygomycotina – Rhizopus
b. Ascomycotina
c. Plectomycetes – Penicillium
d. Discomycetes - Peziza
e. Basidiomycotina
f. Teliomycetes – Puccinia
g. Economic importance of Fungi

Lichenology

General account and economic importance; the structure, reproduction and life cycle of Usnea

Module III

Bryology

10 hrs

23 Introduction and Classification
24 Study of the habit, thallus organization, vegetative and sexual reproduction and alternation of generation of the following types (Developmental details are not required). Riccia, Funaria
23 Economic Importance of Bryophytes.

Pteridology

8 hrs

23 Introduction: General characters morphological and phylogenetic classification.
24 Study of the habitat, habit, internal structure, reproduction and life cycle of the following types (Developmental details not required).
 Selaginella, Pteris
Module IV

Gymnosperms 5 hrs

0 Introduction and classification of gymnosperms.
1 Study of the Habit, Anatomy, Reproduction and life cycle of - *Pinus* (Developmental details are not required)

Plant Pathology 5 hrs

A brief account on the following plant diseases with reference to the symptoms, causative organism, spread of the disease and effective control measures.
0 Brown spot disease of Paddy
1 Powdery mildew of Rubber
2 Yellow vein mosaic of Lady’s finger
3 Quick wilt of Pepper
0 Method of preparation and mode of action of the following fungicides- Bordeaux mixture, Lime sulphur, Tobacco decoction, Neem cake & oil.

Suggested Readings

18. Vashishtha B. R. - Bryophyta - S. Chand and Co. New Delhi
Complementary Course-II

Semester II

BV1231.2 Plant Physiology, Angiosperm Anatomy & Reproductive Botany

Credits: 3 Contact Hours: 54

Module I

Plant Physiology 22 hrs

1. **General introduction**: physiological processes, their significance and applications.

2. **Water relations of plants**: Importance of water to plant life.
 – active and passive absorption, root pressure. Pathway of water across root cells.
 - b. Ascent of sap- vital and physical theories.
 - c. Loss of water from plants: transpiration - cuticular, lenticular and stomatal mechanism - theories
 – starch sugar hypothesis, potassium - ion theory. Significance of transpiration - guttation, anti - transpirants, factors affecting transpiration.
 - d. Water stress and its physiological consequences to drought.

4. **Translocation of solutes**: Path way of movement, phloem transport, mechanism of transport - Munch hypothesis, protoplasmic streaming theory - activated diffusion hypothesis, electro osmotic theory.

Module II

Angiosperm anatomy 22 hrs

1. Objective and scopes of plant anatomy

2. Tissues – Meristems, Definition, Classification based on origin, position, growth patterns, functions.

5. Tissue systems – Epidermal tissue systems, Ground tissue systems & vascular tissue systems. Different types of vascular arrangements.
6. Primary structure – Root, stem and leaf [Dicot & Monocot]. Secondary growth (stelar and extra stelar) Root and stem- cambium (structure and function) annular rings, heart wood and sap wood, tyloses, ring porous wood and diffuse porous wood, periderm formation-phellem, phellogen and phelloderm; lenticels
7. Anomalous secondary growth – Boerhaavia

Module III

Reproductive Botany

1. Micro sporogenesis - structure and functions of wall layers.
2. Development of male gametophyte - Dehiscence of anther.
3. Megasporogenesis - Development of female gametophyte - Embryo sac - Development and types - Monosporic – Polygonum type
4. Pollination - Fertilization - Double fertilization. Structure of Embryo- Dicot [Capsella]

Suggested Readings
1. Devlin & Witham – Plant Physiology (C B S publishers).
8. Maheswari P. - Embryology of Angiosperms - Vikas Pub:
10. Nair PKK Palynology of Angiosperms
12. P. Maheswari - Embryology of Angiosperms - Vikas Pub:
16. Prasad and Prasad (1972) Out lines of Botanical Micro technique, Emkay publishers, New Delhi
Complementary Course-III

BV 1331.2 Angiosperm Morphology, Systematic Botany & Economic Botany

Credits: 3 Contact Hours: 54

Module I

Morphology 4 hrs

Brief account on the various types of inflorescence including special types (Cyathium, Verticillaster, Hypanthodium, Coenanthium and Thyrsus) with examples; floral morphology- Flower-as a modified shoot, Flower parts, their arrangements, relative position, numeric- plan, cohesion, adhesion, symmetry of flower, aestivation types, placentation types; floral diagram and floral formula Fruit types: simple, aggregate and multiple. Seeds: albuminous and exalbuminous.

Module II

Systematic Botany 8 hrs

Definition, scope and significance of Taxonomy, Systems of classification:

- Artificial- Linnaeus sexual system
- Natural - Bentham and Hooker (detailed account)
- Phylogenetic- Engler and Prantl (Brief account only)

Basic rules of Binomial Nomenclature and International Code of Botanical nomenclature (ICBN). Importance of Herbarium, Herbarium techniques and Botanical gardens. A brief account on the modern trends in taxonomy; Chemotaxonomy, Numerical Taxonomy, Cytotaxonomy and Molecular taxonomy

Module III

A study of the following families with emphasis on the morphological peculiarities and economic importance of its members. (Based on Bentham and Hooker’s System)

1. Annonaceae
2. Malvaceae
3. Rutaceae
4. Leguminosae
5. Rubiaceae
6. Asteraceae
7. Apocynaceae
8. Solanaceae
9. Verbenaceae
10. Euphorbiaceae
11. Poaceae

Module III 12 hrs

Economic botany

Study of the Botanical name, Family, Morphology of useful parts, and utility of the following:

- Cereals and Millets - Paddy and Ragi
- Legumes - Ground nut, Black gram.
- Sugar yielding plants - Sugarcane.
- Spices & condiments - Cumin, Clove, Cardamom and Pepper
- Fibre - Cotton
- Dyes - Henna
• Resins - Asafoetida.
• Tuber crops - Tapioca, Colocasia.
• Tropical Fruits - Banana, Jack Fruit.
• Oil yielding - Sesame oil, Coconut.
• Medicinal plants - Ocimum, Adhatoda, Sida, Turmeric.

Suggested readings

Complementary Course-IV
Semester IV 1431.2
Practical COMP
(Practical of BV1131.2, BV1231.2 & BV1331.2)

Credits: 3 Contact hours: 54
Practical of 1131.2

Phycology

1. Make micro preparations of vegetative and reproductive structures of the types mentioned in the syllabus.
2. Identify the algal specimens up to the generic level and make labelled sketches of the specimens observed
 a. Cyanophyceae - Nostoc
 b. Chlorophyceae - Chlorella, Oedogonium and Chara
c. Phaeophyceae - Sargassum
d. Rhodophyceae – Polysiphonia
Mycology 6 hrs
A detailed study of structure and reproductive structures of types given in the syllabus and submission of record. Rhizopus, Penicillium, Peziza, Puccinia and Usnea.

Bryology 2 hrs
1. *Riccia* – Habit - Internal structure of thallus – V. S. of thallus through archegonia, antheridia and sporophyte
2. *Funaria* – Habit, V. S. of archegonial cluster, V. S. of antheridial cluster, Sporophyte V. S.

Pteridology 4 hrs
2. Pteris - Habit, Rhizome and petiole T. S., sporophyll T.S

Gymnosperms 2 hrs
Pinus - Branch of indefinite growth, spur shoot, T. S of old stem and needle, male and female cone, V. S. of male and female cone.

Plant Pathology 2 hrs
Students are expected to observe the symptoms and causal organisms of all plant diseases mentioned below.

0 Brown spot disease of Paddy
1 Powdery mildew of Rubber
2 Yellow vein mosaic of Lady’s finger
3 Quick wilt of Pepper

Practical of BV1231.2 4 hrs.

Plant Physiology
Water potential of onion peel / *Rhoeo* peel by plasmolytic method...
Papaya petiole osmoscope.
Determination of water absorption and transpiration ratio.
Measurement of rate of transpiration using Ganong’s potometer or Farmer’s potometer.
Evolution of oxygen during photosynthesis.
Geotropism using clinostat.
Measurement of growth using Arc auxanometer.

Angiosperm Anatomy 10 hrs
Simple permanent tissue – Parenchyma, Chlorenchyma, Aerenchyma, Collenchyma and Sclerenchyma
Primary structure – Dicot stem: *Hydrocotyle*
Monocot stem: Grass
Dicot root: Pea, *Limnanthemum*
Monocot root: *Colocasia*.
Secondary structure - Stem [Normal type] - *Vernonia* or any normal type
Secondary structure - Root [Normal type] - *Tinospora, Ficus, Carica papaya*, or any normal type
Anomalous secondary thickening –*Boerhaavia*
Practical of BV1331.2

Practicals of Angiosperm Taxonomy 16 Hrs
Students must be able to identify the angiosperm members included in the syllabus (listed below).

1. Annonaceae
2. Malvaceae
3. Rutaceae
4. Leguminosae
5. Rubiaceae
6. Asteraceae
7. Apocynaceae
8. Solanaceae
9. Verbenaceae
10. Euphorbiaceae
11. Poaceae

Draw labeled diagram of the habit, floral parts, L.S of flower, T.S of ovary, floral diagram, floral formula and describe the salient features of the member in technical terms.

Students must submit the practical records at the time of practical examination.

Practical of Economic Botany 2 hrs.
Identify the economic products obtained from the plants mentioned under Economic Botany

- Cereals and Millets - Paddy and Ragi
- Legumes - Ground nut, Black gram.
- Sugar yielding plants - Sugarcane.
- Spices & condiments - Cumin, Clove, Cardamom and Pepper
- Fibre - Cotton
- Dyes - Henna
- Resins - Asafoetida.
- Tuber crops - Tapioca, Colocasia.
- Tropical Fruits - Banana, Jack Fruit.
- Oil yielding - Sesame oil, Coconut.
- Medicinal plants - Ocimum , Adhatoda, Sida, Turmeric

CORE COURSES
Core Courses of Botany

SEMESTER 1
Core Course-I

BV1141.1 Microtechnique, Angiosperm Anatomy and Reproductive Botany

Credits 2 Contact Hours 90 (T54+P36)

Aim and objective: The course is aimed to bring the basic concept and understanding about the simple basics of microtechnique and also the concept and understanding of anatomy of the flowering plants and its relationship to the physiology and environmental adaptability of the plants. It also gives a basic idea on their production and development of the flowering plants and its adaptation to suit to its environment.
MODULE-I

Microtechnique 10hrs

1. Introduction - microscopy - simple and compound – phase contrast; dark field illumination and electron microscopes (SEM and TEM).
2. Micrometry, Cameralucida
3. Sectioning - hand and microtome – rotary and sledge
4. Killing and fixation agents – Carnoy’s formula, Farmers formula, F.A.A
5. Dehydration - reagents
6. Stains and staining techniques - double staining. General account; Stains: safranin, haematoxylin, acetocarmine.
7. Mounting media - D. P. X and Canadabalsam
8. Whole mounts - cytological methods: maceration, smear and squash preparation

Module-II

Angiosperm Anatomy 6hrs

Objective and scope of plant anatomy
Cell wall organization - Gross structure - Primary and secondary wall pits – plasmodesmata -microscopic and sub microscopic structures – Extra cell wall material. Non living inclusions of the cell – Reserve food - secretary products, by products.

Module-III 12hrs

Permanent tissues – Definition, classification - simple, complex and secretory.
Tissue systems – Epidermal tissue systems-stomata, structure and functions, Ground tissue systems & vascular tissue systems. Different types of vascular arrangements

Module-IV 10hrs

Primary structure – Root, stem and leaf [Dicot & Monocot].
Secondary growth - Root and stem- cambium (structure and function) annular rings, heart wood and sap wood, tyloses, ring porous wood and diffuse porous wood, periderm formation-phellum, phellogen and phelloderm; lenticels
Anomalous secondary growth - Bignonia, Boerhaavia.

Module V

Reproductive Botany 12hrs

Introduction to angiosperm embryology.
Microsporogenesis - structure and functions of wall layers.
Development of male gametophyte - Dehiscence of anther.
Megasporogenesis - Development of female gametophyte - Embryo sac - Development and types - Monosporic – Polygonum type, Bisporic - Allium type, Tetrasporic – Adoxa type.
Pollination - Fertilization - Barriers of fertilization - Germination of pollen grains – Double fertilization- Polyspermy and Heterofertilization.

Structure of Embryo - Dicot [Capsella], Monocot [Sagittaria] Endosperm types

Module VI

4 hrs

Practical

Microtechnique

6hrs

1. Familiarize stains, fixatives and mounting media
2. General awareness of Micro technique - maceration, smears & squash
3. Demonstration of microtome sectioning and handsectioning
4. Measurement of specimens using micrometer (Demonstration only).

Anatomy

26 hrs

Non living inclusions - Cystolith, Raphide, Sphaero-raphide, Aleurone grains.
Starch grains (Eccentric, concentric, compound)
Simple permanent tissue – Parenchyma, Chlorenchyma, Aerenchyma, Collenchyma and Sclerenchyma
Primary structure – Dicot stem: Hydrocotyle, Eupatorium.
Monocot stem: Grass and Asparagus.
Dicot root: Pea and Limnanthemum
Monocot root: Colocasia or any monocot root.
Secondary structure - Stem [Normal type] - Vernonia
Secondary structure - Root [Normal type] - Tinospora, Carica papaya, or any normal type
Secretory tissue: Resin canal, Nectary, Latex vessel, Lysigenous and Schizogenous cavities.
Laticifers: Articulated and non articulated.
Epidermal structures –Stomata.
Anomalous secondary thickening - Bignonia, Boerhaavia
Leaf anatomy - Dicot leaf: Ixora. Monocot leaf: Grass

Reproductive Botany

2 hrs

Students should be familiar with the structure of anther and embryo (Permanent slides can be used)

Palynology

4 hrs

Study of pollen morphology of the following plants – Hibiscus, Vinca, Balsam, Ixora, Crotalaria, Bougainvillea by microscopic observation
Suggested Readings

2. Donald A. Johansen-Plant Microtechnique- Mac Graw Hill Bookcompany

6. Prasad and Prasad (1972) Out lines of Botanical Micro technique, Emkay publishers, New Delhi

9. JalandharMaheswari P. - Embryology of Angiosperms - Vikas Pub:

10. Nair PKK Palynology of Angiosperms

SEMESTER II

Core Course-II

BV1241.1 Environmental Studies

Credit: 4

Contact hours: 108 (Theory72+Practical 36)

Aim and Objective: Students should acquire a basic understanding about the structure function of the environment and its interaction with the living systems. It will impart the geographical distribution of plants and the impact of human intervention in the environment and the delicate balance of various factors in the environment. It gives an idea about the various types of biodiversity and the influence of environmental pollution on the biodiversity.

Module I 18hrs

Definition-Scope and relevance to society and human environment. Need for public awareness

Natural Resources

Renewable and non-renewable resources.

Forest resources: Use and over exploitation. Deforestation,

Mineral resources: Use and exploitation, Environmental effects of extracting and using mineral resources.

Water resources: Use and over exploitation of surface water and ground water, floods, drought.

Food resources: Changes caused by agriculture and over grazing, effects of modern agriculture, fertilizer-pesticide problems, water logging and salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.

Land resources: Land as a resource, land degradation, Man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources
Module II
14 hrs
Ecosystems-Concept of an ecosystem- structure and function of an ecosystem.
Biotic and abiotic components- Energy flow in an ecosystem.
Ecological succession-Definition & types.
Food chains -Food web & ecological Pyramids.
Introduction- types, characteristic features, structure and functions of the following ecosystems.
Morphological, anatomical& physiological adaptations of –Hydrophytes, Xerophytes, Halophytes, Epiphytes, Parasites.

Module III
14hrs
Biodiversity and its conservation
Introduction– Definition-genetic, species and ecosystem diversity.
Bio-geographical classification of India.
Value of bio-diversity: social, ethical, aesthetic and option values.
Biodiversity at global, National and local levels. India as mega-diversity nation.
Species concept and diversity. α, β, γ diversity. Ecological niche, eco- types & ecological indicators.

Environmental pollution
2. Solid waste Management (brief account only): Causes, effects and control measures of urban and industrial wastes.
3. Disaster management(brief account only): Floods, earthquake, cyclone and land slides

Module IV
14hrs
Social issues and the Environment
2. Environmental ethics: Issues and possible solutions.
3. Climate change. Global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust.
Module V
Phytogeography 6 hrs
Principles and vegetational types of India-tropical rain forest, sholas and deciduous forest-sand dunes and mangroves, scrub jungle, phytogeographical regions of India.

Module VI 6 hrs
Natural hazards and disaster management
1. Introduction to Hazards- Hazard classification-types of hazards.
2. Natural Hazards: causes, (continental drift, plate tectonics, sea floor spreading, isostacy, etc.,) distribution pattern, consequences and mitigation: Earthquake, Tsunami, Volcanoes, Cyclone, Flood, Drought, Landslide, cold and heat hazards, forest fire, etc.,- causes, types, distribution adverse effects, etc.
3. Man-made hazards, Bomb threat, explosion, hazardous material spill, Fire, Terror attacks, Nuclear hazards.
4. Disaster introduction, disaster Management, Capability, Vulnerability, risk- preparedness and mitigation. Disaster management cycle, community planning, education and Engineered structural strengthening techniques- Hazard zonation and mapping, Risk reduction measures- Unexpected loss of income, Financial emergency and Insurance

Practical 36 hrs
Study of ecological and anatomical modifications of Xerophytes, Hydrophytes, halophytes, epiphytes and Parasites.
Study of plant community by quadrat method.
Observation and study of different ecosystems mentioned in the syllabus.
DrTermination of frequency and density constituent of plant species in a terrestrial community through quadrat and transect (line, belt).
Phytogeographical regions of India.

Suggested Reading
2. Kumaresan B. – Plant Ecology & Phytogeography – Rastrogi Pub:
6. The Geography of Flowering Plants - Good

SEMESTER II
Core Course III; BV1242.1; Practical Botany-I (Practical of BV1141.1 & BV1241.1)
Credit 2; Contact Hours: Practical hours of the above courses 36 hrs

BV1141.1 Microtechnique, Angiosperm Anatomy and Reproductive Botany
Microtechnique 6 hrs
1. Familiarize stains, fixatives and mounting media
2. General awareness of Micro technique - maceration, smears &squash
3. Demonstration of microtome sectioning and handsectioning
4. Measurement of specimens using micrometer (Demonstration only).

Anatomy

26 hrs

Non living inclusions - Cystolith, Raphide, Sphaero-raphide, Aleurone grains.
Starch grains (Eccentric, concentric, compound)
Simple permanent tissue – Parenchyma, Chlorenchyma, Aerenchyma , Collenchyma and Sclerenchyma
Primary structure – Dicot stem: Hydrocotyle, Eupatorium.
Monocot stem: Grass and Asparagus.
Dicot root: Pea and Limnanthemum
Monocot root: Colocasia or any monocot root.
Secondary structure - Stem [Normal type] - Vernonia
Secondary structure - Root [Normal type] - Tinospora, Carica papaya or any normal type
Secretory tissue: Resin canal, Nectary, Latex vessel, Lysigenous and Schizogenous cavities.
Laticifers
 Articulated and non articulated.
Epidermal structures –Stomata.
Anomalous secondary thickening - Bignonia, Boerhaavia
Leaf anatomy - Dicot leaf: Ixora. Monocot leaf: Grass

Reproductive Botany

2hrs
Students should be familiar with the structure of anther and embryo (Permanent slides can be used)

Palynology

2hrs
Study of pollen morphology of the following plants–*Hibiscus, Vinca, Balsam, Ixora, Crotalaria, Bougainvillea* by microscopic observation

Practical of BV1241.1

36 hrs

Environmental Studies

1. Study of ecological and anatomical modifications of Xerophytes, Hydrophytes, halophytes, epiphytes and Parasites.
2. Study of plant community by quadrat method.
3. Observation and study of different ecosystems mentioned in the syllabus.
4. Determination of frequency and density constituent of plant species in a terrestrial community through quadrat and transect (line, belt).
5. Phytogeographical regions of India.
Semester III
Core Course IV

BV1341.1 Phycology, Mycology, Lichenology & Phytopathology

Credit 3 Contact hours 72 (T 36 + P 36)

Aim and Objective: This course is to expose the world of cryptogams and other lower forms of plants such as algae, fungi, lichens etc and also plant diseases caused by virus and fungi, including their control measures.

Module - I 22 hrs

Phycology
Salient features of the following major groups with reference to the structure, reproduction and life cycle of the types given below (Excluding the developmental details) –

0 Cyanophyceae – *Nostoc*
1 Chlorophyceae - *Chlorella, Volvox, Oedogonium, Cladophora*, and *Chara*
2 Xanthophyceae – *Vaucheria*
3 Bacillariophyceae – *Pinnularia*
4 Phaeophyceae – *Sargassum*
5 Rhodophyceae - *Polysiphonia*

Economic importance of algae
a) Role of algae in soil fertility- Fertilizer – Nitrogen fixation- Symbiosis
b) Commercial products of algae – Agar, Alginates, Carrageenin, Diatomaceous earth
c) Algae - medicinal aspects, algal blooms and red tides

Module -II 22 hrs

Mycology
Introduction, structure, reproduction, life cycle, evolutionary trends, Classification based on Ainsworth
Distinguishing characters of different classes of fungi representing the following genera

(Excluding Developmental details)

6 Myxomycotina - General characters.
7 Zygomycotina - *Rhizopus*
8 Ascomycotina
 0 Hemiascomycetes - *Saccharomyces*
 1 Plectomycetes - *Penicillium*
 2 Pyrenomycetes - *Xylaria*
 3 Discomycetes – *Peziza*
9 Basidiomycotina
 0 Teliomycetes - *Puccinia*
 1 Hymenomycetes - *Agaricus*
10 Deuteromycotina - *Cercospora*.
Economic importance of Fungi

Module-III

Lichenology

Lichens - nature of association-classification-habit and habitat- Type Usnea - thallus morphology – internal structure –reproduction-economic importance.

Module-IV

Plant Pathology

Introduction to Pathology – Classification of plant diseases on the basis of causative organisms and symptoms – Host parasite interaction.

Study of the following diseases with emphasis on symptoms, disease cycle and control measures of Leaf mosaic of Tapioca, Citrus Canker, Blast disease of Paddy, Root wilt of Coconut

Brief account of the following fungicides- Bordeaux mixture, Lime sulphur, Tobacco decoction, Neem cake & oil.

Practical

Phycology

Make micro preparations of vegetative and reproductive structures of the types mentioned in the syllabus.

Identify the algal specimens up to the generic level and make labelled sketches of the specimens observed.

Mycology

A detailed study of structure and reproductive structures of types given in the syllabus and submission of record.

Rhizopus, Saccharomyces, Penicillium, Xylaria, Peziza. Puccinia. Agaricus and Cercospora

Lichenology

Make micro preparation of vegetative and reproductive parts of Usnea. Make sketches of the specimens observed.

Plant Pathology

Identify the Diseases mentioned with respect to causal organism and symptoms

Students should be trained to prepare the fungicide Bordeaux mixture & Tobacco decoction.

Suggested Readings

4. Dr. G. Gunasekharan - Laboratory Manual of Microbiology – New Age Pub:
11. Schlegel ,2008 General Microbiology , Cambridge University Press India Pvt Ltd

SEMESTER III
Core Course V
BV1342.1

Bryology, Pteridology, Gymnosperms & Paleobotany

Credits: 2 Contact Hourse: 54 (Theory 36 + Practical 18)

Aim and Objective: It’s a course on lower plants such as bryophytes, pteridophytes and gymnosperms. It will give the students the fundamentals on the systematics, morphology and anatomy and life cycle of these lower plants, which are essential for the proper understanding of the biosphere.

Module -I

Bryology 10 hrs

Introduction and Classification
Study of the habit, thallus organization, vegetative and sexual reproduction and alternation of generation of the following types (Developmental details are not required). Riccia, Marchantia, Funaria
Economic Importance of Bryophytes.

Module- II 12 hrs

Pteridology

Introduction: General characters morphological features and classification by Smith.
Study of the habitat, habit, internal structure, reproduction and life cycle of the following types (Developmental details not required). Psilotum, Lycopodium, Selaginella, Equisetum, Pteris and Marsilea.

Module- III 2 hrs

General Topics: Stelar evolution in Pteridophytes, heterospory and seed habit, relationships of pteridophytes with bryophytes and gymnosperms, economic importance of pteridophytes.

Module- IV 8 hrs

Gymnosperms

Introduction and classification of gymnosperms.
Study of the Habit, Anatomy, Reproduction and life cycle of the following types (Developmental details are not required) – Cycas, Pinus and Gnetum
Evolutionary trends in gymnosperms - Relationship of gymnosperm with pteridophytes and angiosperms
Economic importance of gymnosperms.

Module-V

Palaeobotany

Introduction to palaeo botany. Fossil formation – Techniques of study.
Geological time scale. Evolutionary trends
Applied aspects of Palaeobotany - Exploration of fossils

Practical

Bryology

1. Riccia – Habit - Internal structure of thallus – V. S. of thallus through archegonia, antheridia and sporophyte

Pteridology

1. Psilotum: External features , stem T. S., synangium T. S.
2. Lycopodium: Habit, stem T. S. , strobilus V. S.
5. Pteris - Habit, Petiole T. S., sporophyll T. S. , prothallus

Gymnosperms

Paleobotany

2. Gymnosperm - *Lyginopteris*

Suggested Reading

11. Vasishta B. R. - Bryophyta - S. Chand and Co. New Delhi

SEMESTER IV

Core Course VI

BV1441.1 Plant Physiology

Credits: 2
Contact hours: 54 (Theory36 + Practical 18)

Aim and Objective: The course should give the fundamentals about the biophysical and biochemical aspects on the functioning of the plant system. Students should learn the functions of various plant system through very specific experiments, which are very important to understand the basis of life activities. It should prepare the students pursue higher studies in plant science as well as in Biotechnology.

Module I

General introduction- physiological processes, their significance and applications.

Water relations of plants: Importance of water to plant life.

b) Ascent of sap- vital and physical theories.

d) Water stress and its physiological consequences to drought.
Mineral nutrition: Gross chemical analysis of the plant body, ash analysis, criteria for essentiality of elements, macro and micro elements, role of essential elements and their deficiency symptoms. Culture methods - sand culture, hydroponics and aeroponics. Mechanism of mineral absorption (a) passive absorption- ion exchange and Donnan equilibrium (b) active absorption- carrier concept, Lundegardh hypothesis.

Module II 8 hrs

Module III 6 hrs

Module IV 7 hrs

Translocation of solutes: Path way of movement, phloem transport, mechanism of transport - Munch hypothesis, protoplasmic streaming theory

Module IV 5 hrs

Stress physiology: water stress, salt stress.

Practical 18 hrs

a) Water potential of onion peel / Rhoeo peel by plasmolytic method.
b) Imbibition of water by different types of seeds.
c) Effect of temperature on permeability.
d) Papaya petiole osmoscope.
e) Determination of stomatal index.
f) Compare the rate of transpiration by the upper and lower surface of the leaf by cobalt chloride method.
g) Determination of water absorption and transpiration ratio.
h) Measurement of rate of transpiration using Ganong’s potometer or Farmer’s potometer.
i) Separation of plant pigments by paper chromatography.
j) Evolution of oxygen during photosynthesis.
k) Measurement of photosynthesis by Wilmot’s bubbler.
l) Evolution of CO₂ during respiration.
m) Ganong’s respirometer and measurement of R.Q.
n) Simple respiroscope.
o) Alcoholic fermentation using Kuhn en’s fermentation vessel.
p) Geotropism using clinostat.
q) Measurement of growth using Arc auxanometer.

Suggested readings

1. Devlin & Witham – Plant Physiology (C B S publishers).

SEMESTER IV
Core Course VII

BV 1442.1 Cell Biology, Plant Breeding & Evolutionary Biology

Credits: 2 Contact Hours: 54 (Theory 36 + Practical 18)

Aim and Objective: The course should impart the basics of the biology plant cell and its structural and functional relationship. It should equip the students to understand the fine cellular and molecular details of the plant system in total.

Module-I

Cell biology 20 hrs

1. History and progress of cell biology
2. Ultra structure and functions of the cell components and organelles (A brief account only)-Cell wall; The cell membrane, Endoplasmic reticulum, Ribosomes, Golgi apparatus, Lysosomes, Peroxisomes, Vacuole, Mitochondria, Chloroplast & Nucleus
4. Special types of chromosomes- Salivary gland, Lamp brush and B chromosomes
5. Variation in Chromosome number (Numerical aberrations)- aneuploidy and Euploidy- haploidy, polyploidy- significance.
6. Variation in Chromosome structure (Structural aberrations) - deletion, duplication, inversion and translocation; significance.

Module II 10 hrs
Plant breeding
1. Introduction, objectives in plant breeding.
4. Hybridization: Procedure of hybridisation, inter generic, inter specific, inter varietal hybridisation with examples. Composite and synthetic varieties.
5. Heterosis and its exploitation in plant breeding.

Module -III
Evolutionary Biology 6 hrs
1. Progressive and Retrogressive evolution.
2. Parallel and Convergent evolution.
3. Micro and Macro evolution.
4. Theory of Lamarck, Wiesman and De Vries, Darwinism, Neo- Darwinism
5. Isolation, Mutation, Genetic drift, Speciation

Practical 18 Hrs
1. Study of Microscopes- different magnification of light microscopes
2. Examination of different types of cells- single celled and multicellular systems
3. Make acetocarmine squash preparation of onion root tip and to identify different stages of mitosis
4. Determination of Mitotic Index
5. Make squash preparation of the flower buds of any of the following plants. Rhoeo, Capsicum (To identify Meiosis)
6. Preparation of Karyotype
7. Microscopical examination and assessment of starch granules from potato, rice, tapioca etc
8. Fixation of specimens for cytological studies, Preparation of cytological stains like acetocarmine and safranin.
Suggested Readings

Semester IV

Core Course VIII

BV1443.1 Practical Botany II

(Practical of BV1341.1, BV1342.1, BV1441.1 & BV1442.1)

Credits: 2 Contact Hours: Practical hours of the above courses : 36 hrs

Practical of BV1341.1

Phycology 16 hrs

Make micro preparations of vegetative and reproductive structures of the types mentioned in the syllabus.

Identify the algal specimens up to the generic level and make labelled sketches of the specimens observed.

Mycology 14 hrs

A detailed study of structure and reproductive structures of types given in the syllabus and submission of record.

Rhizopus, Saccharomyces, Penicillium, Xylaria, Peziza, Puccinia, Agaricus and Cercospora
Lichenology
Make micropreparation of vegetative and reproductive parts of Usnea. Make sketches of the specimens observed.

Plant Pathology
Identify the Diseases mentioned with respect to causal organism and symptoms. Students should be trained to prepare the fungicide Bordeaux mixture & Tobacco decoction.

BV1342.1 Bryology, Pteridology, Gymnosperms & Paleobotany 18hrs

Bryology 4hrs
Riccia – Habit - Internal structure of thallus – V. S. of thallus through archegonia, antheridia and sporophyte

Marchantia –Habit- thallus T. S., thallus with Archegonial receptacle, Antheridial receptacle, Male receptacle V .S., Female receptacle e VS., T.S . of thallus through gemma, Sporophyte V. S .

Funaria – Habit, V. S. of archegonial cluster, V .S. of antheridial cluster, Sporophyte V. S.

Pteridology 8 hrs

Lycopodium : Habit, stem T. S. , stobilus V. S.

Equisetum - Habit, rhizome and stem T .S. and V. S. of strobilus.

Pteris - Habit, Petiole T. S. , sporophyll T. S. , prothallus

Gymnosperms 5 hrs

Gnetum -: Habit, stem T. S (young and mature), leaf T. S, male and female strobilus, W. S. of male and female cone, ovule V. S. and seed

Palaeobotany 1hr

Fossilpteridophytes–*Rhynia*Stem, *Lepidodendron*, *Lepidocarpon*.

Gymnosperm –*Lyginopteris*

BV1441.1 Plant Physiology 18 hrs

1. Water potential of onion peel / Rhoeo peel by plasmolytic method.
2. Imbibition of water by different types of seeds.
3. Effect of temperature on permeability.
4. Papaya petiole osmoscope.
5. Determination of stomatal index.
6. Compare the rate of transpiration by the upper and lower surface of the leaf by cobalt chloride method.
7. Determination of water absorption and transpiration ratio.
8. Measurement of rate of transpiration using Ganong’s potometer or Farmer’s potometer.
13. Ganong’s respirometer and measurement of R.Q.
15. Alcoholic fermentation using Kuhn en’s fermentation vessel.

BV1442.1 Cell Biology, Plant Breeding and Evolutionary Biology

1. Study of Microscopes- different magnification of light microscopes
2. Examination of different types of cells- single celled and multicellular systems
3. Make acetocarmine squash preparation of onion root tip and to identify different stages of mitosis
4. Determination of Mitotic Index
5. Make squash preparation of the flower buds of any of the following plants. *Rhoeo, Capsicum* (To identify Meiosis)
6. Preparation of Karyotype
7. Microscopical examination and assessment of starch granules from potato, rice, tapioca etc
8. Fixation of specimens for cytological studies, Preparation of cytological stains like acetocarmine and safranin.

SEMESTER V

Core Course IX

BV1541.1 Angiosperm Morphology and Systematic Botany

Credits: 4

Contact hours: 108 (T 72 + P 36)

Aim and Objective: The course is designed to give a basic awareness in systematic botany and morphology of higher plants and the course will generate interest on students to pursue continuous studies in systematic botany.

Module I

Morphology

Brief account on the various types of inflorescence including special types (Cyathium, Verticillaster, Hypanthodium, Coenanthium and Thyrsus) with examples; floral morphology- Flower-as a modified shoot, Flower parts, their arrangements, relative position, numeric- plan, cohesion, adhesion, symmetry of flower, aestivation types, placentation types; floral diagram and floral formula Fruit types: simple, aggregate and multiple. Seeds: albuminous and exalbuminous.

Module –II

Systematic Botany

Definition, scope and significance of Taxonomy, Systems of classification, Artificial- Linnaeus sexual system, Natural - Bentham and Hooker (detailed account)

Phylogenetic- Engler and Prantl (Brief account only)
Module –III
7 hrs
Basic rules of Binomial Nomenclature and International Code of Botanical nomenclature (ICBN). Importance of Herbarium, Herbarium techniques and Botanical gardens. A brief account on the modern trends in taxonomy; Chemotaxonomy, Numerical Taxonomy, Cytotaxonomy and Molecular taxonomy

Module –IV
45 hrs
A study of the following families with emphasis on the morphological peculiarities and economic importance of its members (based on Bentham & Hooker’s system)

1. Annonaceae
2. Nymphaeaceae
3. Malvaceae
4. Rutaceae
5. Anacardiaceae
6. Leguminosae
7. Myrtaceae
8. Cucurbitaceae
9. Apiaceae
10. Rubiaceae
11. Asteraceae
12. Sapotaceae
13. Apocynaceae
14. Asclepiadiaceae
15. Solanaceae
16. Acanthaceae
17. Verbenaceae
18. Amaranthaceae
19. Euphorbiaceae
20. Orchidaceae
21. Liliaceae
22. Arecaceae
23. Poaceae

Practical
36 hrs
1. Study on various types of inflorescences with vivid record of practical work.
2. Students must be able to identify the angiosperm members included in the syllabus up to the level of families.
3. Draw labeled diagram of the habit, floral parts, L S of flower, T S of ovary, floral diagram, floral formula and describe the salient features of the member in technical terms.

Field trips are to be conducted for three days either as continuous or one day trips.
5.

Suggested Reading

12. Sivarajan, V.V. Introduction to the principle of plant taxonomy, Oxford and IBH Publishing Company
SEMESTER V
Core Course X

BV1542.1 Economic Botany, Ethnobotany & Medicinal Botany

Credits 3 Contact Hours 72 (Theory 54 + P 18)

Module I 5 hrs

Economic botany

Study of the major crops in Kerala with special reference to their Methods of cultivation, Botanical description, morphology of the useful part and economic importance – Coconut and Paddy.

A brief account on the utility of the following plants, specifying the Binomial, family and morphology of the useful parts.

12 hrs.

- Cereals and millets - Wheat and Ragi
- Pulses - Black gram and Bengal gram
- Sugar yielding Plants - Sugar cane
- Spices - Pepper and Cardamom
- Beverages - Coffee
- Fibre yielding plant - Cotton
- Dye Yielding plants - Henna and *Bixa orellana*
- Resins - Asafoetida
- Tuber crops - Tapioca
- Oil yielding Plants - Sesame and Coconut
- Insecticides - Neem

Module II 12 hrs

Ethnobotany

Definition - importance, scope, categories and significance.

Study of various methods to collect Ethnobotanical data.

Plant parts used by tribes in their daily life as food, clothing, shelter, agriculture and medicine.

Study of common plants used by tribes. *Aegle marmelos, Ficus religiosa, Cynodon dactylon, Ocimum sanctum* and *Trichopus zeylanicus*

Ethnobotanic aspect of conservation and management of plant resources

Preservation of primeval forests in the form of sacred groves of individual species

Module III 15 hrs

Medicinal botany

1. Importance and the need for its conservation- Sacred groves. Role of ICAR, IMPB, BSI, NBGRI in conservation and cultivation of medicinal plants.
2. A general account of the medicinal value of plant parts - Rhizome- *Curcuma* and *Zingiber*; Bulb-*Allium cepa* and *A. sativum*; Root- *Asparagus*, *Hemidesmis*, *Acorus calamus*, *Adhatoda vasica*.

Catharanthus roseus, *Phyllanthus amarus*, *Andrographis paniculata*; Leaves-*Aloe vera*, *Centella asiatica* Asoka (*Saraca indica*) and Brahmi (*Bacopa monnieri*) Aswagandha (*Withania somnifera*), Sarpagandha (*Rauwolfia serpentina*)

3. Production of herbal drugs. Extraction procedure-Adulteration of drugs

Module IV

10 hrs

Definition and scope of Pharmacognosy –Ancient and modern medicines -Sidha, Ayurveda, Unani, Acupuncture, Homoeopathy and Allopathy

Sources of crude drugs – roots, rhizome, bulb, corm, leaves, stems, flowers, fruits and seeds

Practical

18 hrs

1. Collection and study of economically important plants and morphology of the useful parts.
2. Identify the economic products obtained from the plants mentioned under Economic Botany
3. Visit a tribal area and collect information on their traditional method of treatment using crude drugs.
4. Familiarize with at least 5 folk medicines and study the cultivation, extraction and its medicinal application.
5. Observe the plants of ethno botanical importance in your area
6. Visit to an Ayurveda college or Ayurvedic institution/ Research centre

Suggested Readings

6. T.E Walles. Text book of Pharmacognosy,
Aim and Objective: This course is giving a thorough knowledge in classical genetics, which is the base of all genetica studies – basic as well as applied science including genetic engineering and gene therapy. This will prepare the students to pursue higher studies in genetics and molecular biology

Module I

Classical Genetics

2. Fruit colour in summer squash. 12:3:1; Complementary genes. Flower color in Lathyrus 9:7; Duplicate gene with cumulative effect. Fruit shape in summer squash. 9:6:1; Duplicate dominant genes in shepherd’s purse. 15:1; Inhibitory factor. Leaf color in Paddy. 13:3

4. Quantitative characters- General characters of quantitative inheritance, polygenic inheritance; Skin color in man, ear size in Maize.

Module II

Molecular Genetics

1. DNA as genetic material- Structure of DNA; A, B and Z forms of DNA, satellite and repetitive DNA.

3. RNA structure- Properties and functions of tRNA, mRNA and rRNA. Genetic code.

5. Concept of gene-Units of a gene, cistron, recon, muton; Types of genes- House keeping genes (constitutive genes), Luxury genes (non constitutive genes), interrupted genes (Split genes) - introns, overlapping gene.

6. Transposable genetic elements- General account, Characteristic, Transposons (jumping genes), Cellular oncogenes (general account only).

Module IV 10Hrs

Population Genetics

Gene frequency and genotype frequency, Hardy Weinberg Law, factors affecting equilibrium – Mutation, migration and selection.

Practicals 36 hrs

Work out problems in

- Monohybrid cross (Dominance and incomplete dominance)
- Dihybrid cross (Dominance and incomplete dominance)
- Gene interactions (All types of gene interactions mentioned in the syllabus)
- Dominant epistasis 12: 3: 1
- Complementary genes 9: 7
- Duplicate genes with cumulative effect 9: 6: 1
- Inhibitory genes 13: 3
- Duplicate dominant gene 15: 1
- Comb pattern in poultry 9:3: 3:1
- Linkage and crossing over
- Two point and three point crosses
- Construction of genetic map.
- Application of Hardy Weinberg formula to population genetics
Suggested Readings

5. Gupta, P. K. Genetics, Rastogi Publications.

SEMESTER VI

Core Course XII

BV1642.1 Practical Botany III
(Practical of BV1541.1, BV1542.1 & BV1641.1)

Contact Hours: 72 (Practical Hours of the above courses)

BV1541.1 Angiosperm Morphology and Systematic Botany 36 hrs

Study on various types of inflorescences with vivid record of practical work.

Students must be able to identify the angiosperm members included in the syllabus up to the level of families.

Draw labeled diagram of the habit, floral parts, L S of flower, T S of ovary, floral diagram, floral formula and describe the salient features of the member in technical terms.

Students must submit practical records, Herbarium sheets (25 Nos:) and Field book at the time of practical examination.

Field trips are to be conducted for three days either as continuous or one day trips.
The members of the following families should be studies in detail with its floral and other morphological characters; plants should be collected and submitted in the form of a herbarium:

1. Annonaceae
2. Nymphaeaceae
3. Malvaceae
4. Rutaceae
5. Anacardiaceae
6. Cucurbitaceae
7. Myrtaceae
8. Cucurbitaceae
9. Apiaceae
10. Rubiaceae
11. Asteraceae
12. Sapotaceae
13. Apocynaceae
14. Asclepiadiaceae
15. Solanaceae
16. Acanthaceae
17. Verbenaceae
18. Amaranthaceae
19. Euphorbiaceae
20. Orchidaceae
21. Liliaceae
22. Arecaceae
23. Poaceae

BV1542.1 Economic Botany, Ethnobotany & Medicinal Botany 18 hrs

Collection and study of economically important plants and morphology of the useful parts.
Identify the economic products obtained from the plants mentioned under Economic Botany.
Visit a tribal area and collect information on their traditional method of treatment using crude drugs.
Familiarize with at least 5 folk medicines and study the cultivation, extraction and its medicinal application.
Observe the plants of ethno botanical importance in your area.
Visit to an Ayurveda college or Ayurvedic institution/Research centre.

BV1641.1 Genetics 36 hrs

Work out the following problems in
Monohybrid cross (Dominance and incomplete dominance)
Dihybrid cross (Dominance and incomplete dominance)
Gene interactions (All types of gene interactions mentioned in the syllabus)
 - Dominant epistasis 12: 3: 1
 - Complementary genes 9: 7
 - Duplicate genes with cumulative effect 9: 6: 1
 - Inhibitory genes 13: 3
 - Duplicate dominant gene 15: 1
 - Comb pattern in poultry 9:3: 3:1
Linkage and crossing over
Two point and three point crosses
Construction of genetic map.
Application of Hardy Weinberg formula to population genetics.
Core Courses of Zoology

SEMESTER I

Core Course

BV1141.2 Animal Diversity – I: Nonchordata

Credits: 2

Module I

Kingdom Protista

General characters

Types: Morphology, life history, pathogenicity and prophylaxis of (1) Entamoeba and (2) Plasmodium
Examples: Trypanosoma, Noctiluca, Paramecium, Opalina

Kingdom Animalia

Outline classification – Subkingdom Mesozoa, (e.g. Rhopalura), Subkingdom Parazoa, Subkingdom Eumetazoa.
Levels of organization – cellular, tissue, organ and organ system
Divisions of Eumetazoa – Radiata, Bilateria, Acoelomata, Pseudocoelomata, Eucoelomata, Protostomia, Deuterostomia.

Module II

Phylum Porifera

General characters
Examples: Sycon, Spongilla and Euplectella; mention gemmule.

Phylum Coelenterata [= Cnidaria]

General characters
Type: Obelia (Structure of colony and medusa, polymorphism, life cycle and alternation of generation) Class Hydrozoa – e.g. Hydra, Obelia, Physalia
Class Scyphozoa – e.g. Aurelia
Class Anthozoa – e.g. sea anemone and Madrepora.
Corals and coral reefs.

Module III

Phylum Platyhelminthes

General characters
Class Turbellaria – e.g. Planaria
Class Trematoda – e.g. Fasciola
Class Cestoda – e.g. Taenia solium

Phylum Aschelminthes [=Nematoda]

General characters
Examples: Ascaris, Ancylostoma, and Wuchereria
Module IV

Phylum Annelida

General characters
Class Polychaeta: e.g. *Nereis* (structure of parapodium, heteronereis), *Aphrodite, Arenicola*.
Class Oligochaeta: e.g. Earthworm (Morphology, structure of seta, digestive system and nervous system)
Class Hirudinea – e.g. leech (*Hirudinaria*)

Vermiculture

Module V

Phylum Onychophora

General characters
Example: *Peripatus* (distribution, morphology and affinities)

Phylum Arthropoda

General characters
Type: *Penaeus*
Class Crustacea – e.g. *Penaeus*, Hermit crab (*Eupagurus*),
Sacculina Class Myriapoda – e.g. Millipede, Centipede
Class Insecta – e.g. Cockroach (morphology, mouth parts, digestive system, and nervous system), *Lepisma*, termite, honey bee, silk moth, *Belostoma, Leptocoriza, Oryctes*.
Mosquitoes (Anopheles, culex, Aedes)
Tse-Tse fly, Sand fly, vector borne diseases (Dengue, Chicken Guinea, Filariasis, Sleeping sickness, Kala-Azar, Malaria)
Class Arachnida – e.g. spider, scorpion, *Limulus*
Class Arachnida – e.g. spider, scorpion, *Limulus*
Pest of coconut, paddy, stored foodgrains- any three in each
Sericulture, Apiculture

Module VI

Phylum Mollusca

General characters
Class Monoplacophora: e.g. *Neopilina*
Class Aplacophora: e.g. *Neomenia*
Class Amphineura: *Chiton*
Class Scaphopoda: *Dentalium*
Class Pelecypoda: e.g. *Lamellidens, Perna*, pearl oyster.
Class Gastropoda: e.g. *Pila, Xancus*
Class Cephalopoda: e.g. *Sepia, Loligo, Octopus and Nautilus*.
Pearl culture

Module VII

Phylum Echinodermata

General characters
Class Crinoidea: e.g. sea lily (*Antedon*)
Class Asteroidea: e.g. starfish (*Asterias*); Water vascular system
Class Ophiuroidea: e.g. brittle star (*Ophiocactus*)
Class Echinoidea; e.g. sea urchin (*Echinus*)
Class Holothuroidea: e.g. sea cucumber (*Holothuria*)

Phylum Hemichordata

General characters (Classification not required)
E.g. *Balanoglossus* (morphology, tornaria larva and affinities)

Suggested Readings

2. Barrington, E. W. J. *Invertebrate Structure and Function*
SEMESTER II
Core Course
BV1241.2: Environmental Studies

Credits: 4
Contact Hours: 72

Environmental Biology
Module I
Introduction: Ecology- definition and relation to humanity; subdivisions- autecology and synecology; definitions of ecological niche, habitat, population, community, ecosystem and biosphere.

Module II
Components of ecosystem: abiotic and biotic components; autotrophs and heterotrophs; producers, consumers, decomposers and transformers.
Ecosystem function: production, consumption, decomposition and transformation; productivity-primary and secondary productivity; trophic structure, food chain and food web; ecological pyramids; keystone species.
Ecological energetics: energy flow in ecosystem and the laws of thermodynamics.
Pond as an ecosystem.

Module III
Biogeochemical cycles: Types of cycles – gaseous and sedimentary cycles with examples; carbon cycle and nitrogen cycle.
Limiting factors: concept of limiting factor – Leibig’s law of minimum, Shelford’s law of tolerance and Combined concept of limiting factors.
Ecological factors: Light and temperature
Light as a limiting factor
Temperature as a limiting factor

Module IV
Community ecology: concept of biotic community with examples; community structure; species diversity; dominance; composition and stratification; ecotone and edge effect; Gause’s competition exclusion principle; ecological indicators.
Ecological succession: definition; types of succession with examples; seral stages and concept of climax.
Ecological succession in a pond.

Module V
Population ecology: Population – definition and properties- density, mortality, natality, age distribution; biotic potential, intrinsic rate of natural increase, environmental resistance and carrying capacity; growth forms- J- and S-shaped curves; life history immigration; population regulation – density-independent and density-dependent.
Population interactions (positive and negative)

Module VI
Habitat Ecology: physicochemical features, characteristic flora and fauna and adaptations of the following:
Terrestrial habitat: concept of biomes; Arctic tundra, deserts, grasslands and forests (various types)
Freshwater habitat: lentic and lotic habitats; ponds, lakes, rivers and streams.
Marine habitat: pelagic and benthic; littoral and deep sea; estuaries.
Global Ecology: global environmental change – global warming; greenhouse effect.
Pollution: Air pollution; Water pollution

Module VIII
8 hours

Conservation Biology

Introduction: Need of conservation biology
Extinction: causes of extinction; rates of extinction; human caused extinction.
Conservation of Biodiversity: in situ and ex situ conservation; gene bank.
Environmental conservation: natural resources- various types; reasons for conservation of natural resources; forest and wildlife – importance and conservation; importance of wet lands with special reference to mangroves.

Module VIII
10 hours

DISASTER MANAGEMENT: Understanding the Concepts and definitions of Disaster, Hazard, Vulnerability, Risk, capacity and disaster management.

Natural Disaster Management in India:
2. Geologically related disasters: Landslides and Mudflows, Earthquakes, Dam Failures/ Dam Bursts and Mine Fires
3. Chemical, Industrial & Nuclear related disasters

Main elements of Mitigation strategy for disasters. Management and mitigation of major natural disasters in India: Floods, Cyclones, Earthquakes and Landslides. Disaster Management Cycle, Three stages of Disaster Management: Pre-disaster Stage (preparedness), 2. Emergency Stage and 3. Post Disaster stage - Rehabilitation

Hazardous material spill and release; Bomb threat, explosion, campus shooting and terroist incidence. Guidelines for fire & Emergency drill and evacuation procedures for educational buildings.

Suggested readings

4. Dr. S. Arulsamy and JJEYADEVI Disaster Management Neelkamal Publishers
9. Mukherjee, B. Environmental Biology. TMH
12. R K Bhandani, An overview on natural & man-made disasters and their reduction, CSIR,
15. Stiling, P. Ecology Theories and Applications. PHI
17. Wright, R.T. Environmental Science. PHI

SEMESTER I & II

Core Course

BV1242.2: Practical Zoology – I

[Practical of BV1141.2 & BV1241.2]

Credits: 2

Contact Hours: Semester I: 36; Semester II: 36; Total: 72

I. **Study of permanent slides / specimens**

 Protista (2), Sponges (1), Coelenterata (4), Platyhelminthes (2), Aschelminthes (2), Annelida (2), Arthropoda (4), Mollusca (2), Echinodermata (2), Hemichordata (1), Prochordates (2), Cyclostomata (1), Pisces (8), Amphibia (3), Reptilia (4), Aves (2), quill feather, Mammalia (2).

II. **Osteology**

 Human skeleton: pectoral girdle, pelvic girdle, typical vertebra, atlas, axis.

III. **Study of Animal anatomy**

 Minor practical (any five)

 1. Nereis : Parapodium mounting
 2. Earthworm : mounting of setae
 3. Penaeus : mounting of appendages
 4. Cockroach : mounting of mouth parts, salivary apparatus (in situ)
 5. Shark : Placoid scale mounting
 6. Mackerel : Cycloid scale mounting (minor)
 7. Mullet : Ctenoid scale mounting (minor)

 Major practical (any two)

 1. Earthworm - Nervous system
 2. Cockroach - Digestive system
 3. Prawn - Nervous system
SEMESTER III
Core Course
BV1341.2 Developmental Biology and Reproductive Biology

Credits: 3 Contact Hours: 36

Module I 8 hours

Introduction and developmental processes
1. Historical perspective- preformation, epigenesis, germplasm and biogenetic law; aim and scope of Developmental Biology
2. Egg: structure of a typical egg; classifications based on the amount and distribution of yolk; polarity and egg envelopes.
3. Cleavage: types – holoblastic and meroblastic; meridional, equatorial, vertical and latitudinal; patterns – radial, spiral, bilateral, rotational; morula stage; cell lineage.
5. Fate map: Definition, presumptive organ forming areas.
7. Cell Differentiation: potency-unipotency, pluripotency and totipotency of embryonic cells, commitment, competence, determination and differentiation; stem cells.
8. Parthenogenesis

Module II 10 hours

Animal development
2. Development of Frog: cleavage, morula, blastulation, gastrulation, neurulation, formation of notochord and mesoderm; organogeny of brain, eye and, heart.
3. Development of Chick: cleavage, blastulation, gastrulation; Study of Primitive streak stage and 24 hour embryo.
4. Embryonic membranes in mammals: Types and functions (development not required)
5. Senescence

Module III 6 hours

Experimental Embryology
1. Fate map construction: vital staining, carbon particle marking and radioactive tracers.
2. Spemann’s constriction experiments.
4. Embryonic induction: concept of induction and organizer; primary, secondary and tertiary induction and organizers.
5. Embryonic stem cells and stem cell research.
6. Cloning in animals

Module IV

Reproductive Biology

1. Reproductive cycles: oestrous and menstrual cycles and their hormonal control.
2. Gonads: Ovary, Graafian follicle, ovulation.
5. Fertilization: agglutination; activation of spermatozoan; activation of ovum; cell surface molecules in sperm-egg recognition; amphimixis; polyspermy.
6. Development of man: fertilisation, blastocyst; implantation; brief account of pregnancy, gestation, parturition and lactation; teratology (definition).
7. Prenatal diagnosis- amniocentesis, chorionic villus sampling, ultrasound scanning.
8. Infertility: causes (male and female); Assisted Reproductive techniques – artificial insemination, in vitro fertilization, surrogate birth, and embryo transfer (in farm animals and man); test tube babies.
9. Fertility control: contraception, birth control methods; abortion and MTP.

Suggested readings

5. Berril, N.J. & Karp, G. Development. TMH.
8. Majumdar, N.N. Textbook of Vertebrate Embryology. TMH
10. Patten, B.M. Early Embryology of the Chick. TMH.
SEMESTER III
Core Course
BV1342.2: Animal Diversity – II: Chordata

Credits: 2
Contact Hours: 36

Module I 2 hours

Introduction

Chordate characters (diagnostic, general and advanced); comparison of chordates and non-chordates. Subphylum 1. Urochordata (Tunicata)

General characters

Examples: *Ascidia* (morphology and metamorphosis), *Oikopleura, Salpa*

Subphylum 2. Cephalochordata

General characters

Eg. *Amphioxus*

Module II 6 hours

Subphylum 3. Vertebrata

General characters

Division 1 Agnatha

General Characters

Class Cyclostomata: e.g.: *Petromyzon* (mention ammocoete larva)

Division 2 Gnathostomata

General characters

Superclass Pisces

General characters

Class Chondrichthyes (Cartilaginous fishes)

Subclass Elasmobranchii: *Scoliodon* (morphology, structure of placoid scale and development), *Narcine*,

Subclass Holocephali: *Chimaera*

Class Osteichthyes (Bony fishes)

Subclass Choanichthyes

Order 1. Crossopterygii (coelacanths): *Latimeria*

Order 2. Dipnoi (lung fishes): *Proopterus, Lepidosiren, and Neoceratodus* (comment on distribution of lung fishes)
Subclass Actinopterygii
Superorder 1. Chondrostei: *Acipenser*
Superorder 2. Holostei: *Lepidosteus*
Superorder 3. Teleostei: *Clarias, Anabas, Saccobranchus, Etroplus, Mugil, Echeneis, Sardinella, Rastrelliger*
Accessory respiratory organs in fishes

Module III
Superclass Tetrapoda
General characters
Class Amphibia
General characters
Order Apoda: *Ichthyophis*
Order Urodela (Caudata): *Ambystoma* (mention Axolotl larva and neoteny)
Order Anura: Frog (*Rana*), *Bufo, Hyla, Rhacophorus*

Module IV
Class Reptilia
General characters
Subclass 1. Anapsida
Order Chelonia: *Chelone*
Subclass 2. Parapsida: *Ichthyosaurus*
Subclass 3. Diapsida
Order 1. Rhynchocephalia: *Sphenodon*
Order 2. Squamata
Suborder 1. Lacertilia: Calotes, *Hemidactylus, Chamaeleon, Draco*
Suborder 2. Ophidia: *Typholops, Dryophis, Ptyas, Naja, Bungarus, Enhydrina, Viper*
Order 3. Crocodilia: *Crocodylus, Alligator*
Subclass 4. Synapsida: *Cynognathus*
Identification of poisonous snakes using identification key.
Module V

Class Aves

General characters

Subclass 1. Archaeornithes: Archaeopteryx (brief account and affinities)

Subclass 2. Neornithes

Super order 1. Palaeognathae (=Ratitae)
Examples: Apteryx (kiwi), Struthio (ostrich), Emu

Super order 2. Neognathae (=Carinatae)
Examples: peafowl, sparrow (Passer), Crow, koel, parrot, pigeon, Kite, penguin, vulture, owl, hornbill

Flight adaptations in birds
Migration of birds

Module VI

Class Mammalia

General characters

Homo sapiens – detailed study of anatomy (exclude skull, arteries, veins and nerves)

Subclass 1. Prototheria: platypus (Ornithorhynchus), Tachyglossus (= Echidna)

Subclass 2. Metatheria: opossum (Didelphis), kangaroo (Macropus)

Subclass 3. Eutheria

Order 1. Pholidota pangolin (Manis)

Order 2. Lagomorpha rabbit (Oryctolagus), hare (Lepus)

Order 3. Rodentia Rat (Ratus)

Order 4. Insectivora hedgehog (Paraechinus), Suncus (= Crocidura)

Order 5. Chiroptera Pteropus, Vampyri

Order 6. Primata

Order 7. Carnivora Order 8. Cetacea

Order 9. Artiodactyla Order 10 Perissodactyla

Order 11. Sirenia

Order 12. Proboscidea

Macaca, Gorilla, Pongo, Hylobates, Homo

seal (Phoca), walrus (Odobenus), Panthera (= Leo) sps, Canis, Herpestes

Delphinus (dolphins), Balaenoptera (baleen whale)

Giraffe, Hemitragus (tahr), Camel, Hippopotamus

Equus (horse), Rhinoceros

Dugong

Elephas maximus indicus (Indian elephant), Loxodonta africana (African savanna elephant), Loxodonta cyclotis (African forest elephant) Aquatic mammals and their adaptations
Suggested Readings

2. Chaudhury, S.K. *Concise Medical Physiology*, NCBA
6. Guyton and Hall *A Textbook of Medical Physiology*
17. Sharma, B.D. *Indian Poisonous Snakes*. Anmol Publications, New Delhi
SEMESTER IV
Core Course
BV1441.2 Animal Physiology

Credits: 2
Contact Hours: 36

Module I
4 hrs
Nutrition: Types of nutrition; Mechanical and chemical digestion of carbohydrates, proteins and fats; hormonal control of digestion; absorption mechanism; BMR Vitamin deficiency diseases.

Module II
4 hrs
Respiration: respiratory pigments and their role; gas transport – oxygen and CO$_2$ transport; Oxyhaemoglobin curve; Bohr effect; Carbon monoxide poisoning. Physiological effects of smoking

Module III
8 hrs
Circulation: Body fluids – importance and types; closed and open types of circulatory system; blood – composition and functions; blood groups – ABO and Rh systems, MN, Lewis and Bombay groups; blood clotting – intrinsic and extrinsic mechanisms and their factors; anticoagulants.
Heart: Detailed structure and types of heart – tubular and chambered; neurogenic and myogenic; pace makers and conducting system of human heart; cardiac rhythm; blood pressure; electrocardiogram. Common cardiovascular diseases (hypertension, arteriosclerosis, myocardial infarction)

Module IV
8 hrs
Excretion: nitrogenous wastes; ammonotelic, ureotelic and uricotelic modes of excretion; structure of human nephron; urine formation in man – detailed account with countercurrent system; normal and abnormal constituents of urine; hormonal regulation of renal function; Dialysis and artificial kidney
Muscle physiology: types of muscles; ultrastructure of striated muscle fibre; muscle contraction – theories of contraction; chemistry of contraction; neuromuscular junction; fatigue: muscle twitch; latent and refractory periods; rigor mortis
Module V

Nerve Physiology: Sense organs-eyes, (physiology of vision), ear (structure and functions- hearing and balancing), olfactory organs and taste receptors; structure of a typical neuron; types of neurons; myelinated and nonmyelinated nerve fibres; structure and types of synapse; initiation and conduction of nerve impulse; neurotransmitters; synaptic transmission; reflex action and reflex arc; EEG; Nervous disorders - epilepsy, Alzheimer’s disease, Parkinson’s disease.

Endocrinology: hormones – definition and types of hormones; mechanism of hormone action-at the levels of cell membrane, organelles and genes; positive and negative feedback regulation; structure and functions of endocrine glands – thyroid, parathyroid, thymus, islets of Langerhans, adrenal, pituitary, hypothalamus, pineal body, gonads and placenta; brief account of prostaglandins

Hormonal disorders

Suggested Readings

5. Guyton, A.C. and Hall, J.E. Textbook of Medical Physiology. Harcour
7. Hoar, W.S. General and Comparative Animal Physiology. PHI.
13. Oser, B. Hawk’s Physiological Chemistry. TMH.
14. Oser, B. Hawk’s Physiological Chemistry. TMH.

SEMESTER IV

Core Course

BV 1442.2 Cell Biology

Credits: 2 Contact Hours: 36

Module I 2 Hours

General classification of cell types: prokaryotes and eukaryotes, PPLo's, bacteria, plant cell and animal cell
Module II

3. Interphase Nucleus – structure and function Nuclear membrane: pores and pore complex; nuclear lamina; Nucleoplasm: nature and importance Nucleolus: structure; nucleolar organizer and functions. Chromatin: Euchromatin and heterochromatin

Module III

Chromosomes – Chemical composition; structure of a typical metaphase chromosome; centromeres, telomeres, nucleosome organization. Classification of chromosomes; Giant chromosomes (polytene and lampbrush chromosomes; endomitosis); chromosome banding pattern.

Chromosomal aberrations: Variations in number and structure.
Module IV

9 hours

Cell cycle: G₁, S, G₂ and M phases (mention G₀ and D₀ stages and their significance)
Mitosis: description of all stages.
Meiosis: description of all stages; synaptonemal complex and significance.

Module V

9 hours

Cell differentiation: General characteristics; apoptosis, necrosis.
Cancer Cells: characteristics of cancer cells; types of tumour; factors responsible for cancer.

Suggested Readings

4. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology, Lippincott Williams and Wilkins
5. Gupta, P. K. Cell and Molecular Biology, Rastogi Pubs., Meerut.

SEMESTER III & IV

Core Course

BV1443.2 Practical Zoology – II

[Practical of BV1341.2, BV1342.2, BV1441.2 & BV1442.2]

Credits: 2

Contact Hours: Semester III: 36; Semester IV: 36; Total: 72

Cell Biology

Measurement of size of microscopic objects using ocular and stage micrometers
Study of different types of cells (prokaryotes and eukaryotes) using slides/models/charts.
Study of cytoplasmic organelles and cell inclusions (through permanent slides, models and charts)
Study of interphase nucleus in human buccal smear and Barr bodies.
Study of mitochondria in insect flight muscles/ human buccal smear.
Calculation of mitotic index and metaphase index in onion root.

Genetics

Study of monohybrid ratio using coloured beads.
Study of normal chromosome complement and karyotype of man.
Preparation of karyidiogram from microphotographs
Study of abnormal karyotypes and genetic syndromes of man (Down syndrome, Turner’s syndrome and Klinefelter’s syndrome)
Construction of pedigree chart – any two
Frequency of genetic traits in humans: blood groups, eye colour, widow’s peak (any two traits).

Developmental Biology (charts/models/permanent slides)
Study of different types of eggs: frog, chick and man.
Frog development: Cleavage, Blastula, Gastrula
Chick embryology: Primitive streak stage and 24 hours embryo.

Physiology
Paper partition chromatography of amino acids (3 amino acids and a mixture)
Blood smear preparation – identification of leucocytes
Determination of human blood group – A, B, AB and O, and Rh+ and Rh-
Osmotic properties of RBCs – effect of isotonic, hypotonic and hypertonic solutions.
Activity of human salivary amylase on starch
Detection of Abnormal constituents of urine (glucose and albumin)

SEMESTER V
Core Course
BV1541.2: Systematics, Biodiversity and Animal Behaviour
Credits: 3 Contact Hours: 54

Systematics
Module I 8 hours
Introduction: definition of classification, taxonomy and systematics; nomenclature- binomial and trinomial nomenclature; International rules of Zoological nomenclature (brief account).
Principles of classification: Procedures and rules of Taxonomy; hierarchy, taxon, phenon, category; concept of species and subspecies.
Methods of systematics: numerical taxonomy (phenetics), cladistics (phylogenetic systematics), evolutionary classification and molecular systematics.

Biodiversity
Module II 10 hours
Introduction: definition; global biodiversity, biodiversity of India; levels of biodiversity –species diversity, community and ecosystem diversity and genetic diversity; types of biodiversity – alpha, beta and gamma diversities; species diversity and ecosystem stability; keystone species.
Biodiversity hotspots: Global biodiversity hotspots; Indian region (Western Ghats, Sree Lanka, Eastern Himalaya & Indo-Burma)
Threats to biodiversity: habitat modification, pollution and poaching; invasive species.

Loss of biodiversity and its causes

Biodiversity Convention: IUCN categories and Red Data Book.

Animal Behaviour

Module III
8 hours

Introduction: History and scope of animal behaviour, methods used in the study of Ethology

Stimulus and Response: Stimulus-response theory; stimulus filtering; fixed action pattern; innate releasing mechanism; sign stimulus and social signals (social releasers).

Behaviour patterns, behaviour systems and social behaviour (definitions)

Categories of behaviour systems (definition and examples): shelter seeking, agonistic, ingestive, sexual, care giving, care soliciting, eliminative, allelomimetic and investigative behaviour.

Module IV
18 hours

Instinctive behaviour: definition; characteristics of instinctive behaviour; comparison of instinct and learning; adaptive advantage.

Learning: types of learning; habituation; reflexes, latent learning, insight learning and imprinting.

Physiology of learning.

Motivation: goal oriented behaviour and drive; models of motivation (Deutsch’s model and Lorenz’s psychohydraulic model).

Module V
10 hours

Circadian rhythm: definition; biological clock; chronobiology; role of pineal gland.

Hormones and behaviour (brief account).

Sociobiology: social groups – merits and demerits; properties of societies;

Societies in honey bee and elephants.

Pheromones: types of pheromones; chemical nature of pheromones; human pheromones.

Suggested Readings:
SEMESTER V

Core Course

BV 1542.2: Genetics

Credits: 4

Module I 18 hours

Mendelian Genetics: Mendel and his experiments; Mendelian laws of inheritance.
Genetic terminology: gene, allele, genotype, phenotype, genome; wild type and mutant type; test cross, back cross and reciprocal cross.
Gene interactions: Allelic - incomplete dominance; codominance; lethal genes. Non-allelic - complementary genes; epistasis; co-epistasis, dominant (feather coat) and recessive (coat colour).
Polygenic or quantitative inheritance: skin colour in man.
Multiple alleles: blood group alleles -ABO system and its inheritance.

Module II 18 hours

Linkage, crossing over and recombination: linked genes, linkage group; complete and incomplete linkage; chromosome theory of linkage; crossing over – mechanism and kinds of crossing over; significance of crossing over; sex linkage; chromosome mapping (brief account).
Mutations: Types of mutations: somatic and germinal, spontaneous and induced, autosomal and allosomal, chromosomal and gene mutation; molecular basis of mutation; induction of mutation – physical and chemical mutagens.
Extrachromosomal inheritance: maternal effects in Drosophila, mitochondrial DNA and kappa particles in Paramecium.

Module III 18 hours

1. Agrawal, K.C. Biodiversity, Agrobios
7. Dethier, V.G. and Stellar, E. Animal Behaviour
14. Mayr, E. Principles of Systematic Zoology, TMH
20. Wood Gush, D.G.M. Elements of Etholog
Sex determination: autosomes and sex chromosomes; Barr bodies and Lyon’s hypothesis; Chromosomal basis of sex determination (XX-XY, XX-XO, ZZ-ZW types); Genic balance theory; sex mosaics; environmental control of sex determination; intersex, gynandromorphs.

Sex-linked, sex-limited and sex-influenced inheritance.

Module IV
18 hours

Concept of gene: structural and functional concept; genome; split genes; introns and exons; overlapping genes; transposable elements; pseudogenes.

Genetics of development: role of gene in development; homeotic genes and Hox genes; transgenics and knockout mutations.

Module V
18 hours

Human genetics

Karyotyping: human chromosome complement; pedigree analysis.

Sex linked disorders: Colour blindness, Haemophilia

Biochemical Genetics- albinism, alkaptonuria, phenyl ketonuria and sickle cell anemia (brief account).

Eugenics and Genetic counselling

Human Genome Project

Suggested Readings

2. Arumugam N, Genetics, SARAS Pub.
8. Sarin, C. *Genetics*. TMH

SEMESTER VI

Core Course

BV1641.2: Evolution

Credits: 2
Contact Hours: 90

Module I

Geological time scale: various eras, periods and epochs with characteristic fauna.

Fossils: dating of fossils; significance of fossils.

Module II

8 hours
Origin of Life: origin of basic biomolecules, proteinoids, coacervates and microspheres; concept of Oparin and Haldane; Experiment of Miller.

Module III

10 hours

Evidences of organic evolution- morphological, embryological, palaeontological, biochemical, physiological, and biogeographical; living fossils.

Module IV

18 hours

Early Evolutionary thoughts: Theories and their criticism – Lamarckism, Darwinism, Mutation theory.

Factors that change gene frequency: Evolutionary forces – natural selection and genetic drift. Other factors – migration, bottleneck effect and founder effect.

Module V

18 hours

Process of Evolution

Modern synthetic theory: Development; concepts; operation (variations, natural selection, isolation, speciation).

Natural selection: significance; types – stabilizing, directional, and disruptive selection.

Isolation: Isolating mechanisms – types and significance

Speciation: types and process

Module VI

8 hours

Products of Evolution

Evolution of Biosphere (anaerobic and aerobic metabolism, photosynthesis, oxygen build up and its consequences), Origin of Prokaryotes and Eukaryotes, Evolution of eukaryotic organelles (mitochondria and chloroplast)

Evolution of man (brief accounts of Ramapithecus, Australopithecus, Neanderthal man, Cromagnon and Modern man).

Module VII

12 hours

Tempo of evolution

microevolution, macroevolution, megaevolution, quantum evolution, gradualism, punctuated equilibrium.

Molecular evolution: rates of molecular change; evolutionary clocks.

Patterns of Evolution

Convergent evolution, Divergent evolution (Adaptive radiation), Coevolution, Parallel evolution, Orthogenesis, Orthoselection, Anagenesis, Cladogenesis, and preadaptation Adaptive radiation in Darwin’s finches
Module VIII
6 hours

Populations and Evolution

Mimicry: Batesian and Mullerian mimicry and their significance.
Altruism; kin selection; sexual selection.

Suggested readings
1. Arora, Mohan P. *Evolutionary Biology*. Himalaya Publishing House
3. Darwin, C. *The Origin of Species*, OUP.
5. Dobzhansky, T. *Evolution, Genetics and Man*. John Wilkey
7. Hall, B.K. and Hallgrimson, B. *Strickberger’s Evolution*.
9. Lull, R.S. *Organic Evolution*. Light Life Publication
12. Moya, A. and Font, E. *Evolution from Molecules to Ecosystem*. OUP
SEMESTER V & VI

Core Course

BV1642.2 Practical Zoology III

[Practical of BV1541.2, BV1542.2 & BV1641.2]

Credits: 3

Contact Hours: Semester V: 36; Semester VI: 36; Total: 72

Preparation of dichotomous key up to Orders/Families for identification of any two groups (insects/molluscs/fishes/snakes)

Identification (Generic and specific name) and systematic position of animals belonging to different groups and habitats of the locality (based on slides, specimens, photos or figures). Non-chordates (Coelenterates/Crustaceans/Insects/Molluscs): 10; Chordates (fishes/Snakes/Birds/Mammals): 10

Study of models/charts/specimens related to any four of the following:

- Homologous organs (limbs of 5 different groups of vertebrates)
- Analogous organs (wings of bird, insect and bat)
- Vestigial organs in humans (any four)
- Connecting links (Archeopteryx and Peripatus)
- Adaptive radiation in reptiles/mammals/Darwin’s finches
- Evolution of man based on three hominid fossils

Study of food web (Construction and comment)

Estimation of dissolved oxygen in two samples of water.

Estimation of dissolved carbon dioxide in two samples of water.

Demonstration of primary productivity by light and dark bottles.

Determination of pH of different sample solutions using indicator paper or pH meter.

Determination of concentration of unknown solutions (nitrates/sulphates) using photocolorimeter/spectrophotometer

Extraction of soil insects by Berle’s funnel (Demonstration).

Alarm pheromones in insects (Demonstration).

Field study/Study tour

Field trip and/or Study Tour are a compulsory element of the curriculum. The students are required to visit different ecological habitats and/or places or institutions of biological interest for not less than 5 days. The study is preferably spread over the first, second and third years. They are expected to visit Research Institutes/Wildlife sanctuaries/Zoological Museums/Zoos/ecosystems/local areas of biological interest. A detailed report of the field study/study tour specifying the habitats, places and institutions visited, date and time of visit, details of observations made, description of the observed fauna etc. must be submitted by each student for evaluation on the day of practical examination of Semester VI. The Study tour/Field study report is compulsory for each student appearing for practical examination.
Core Courses of Chemistry

SEMESTER I

Core Course

BV1142 Inorganic Chemistry I

Credit 4
Contact hours: 126 (Theory 90 + Practical 36)

Aim and Objective

23 To understand the structure of atomic nucleus, properties of elements in relation to electronic configuration. To learn the principles of chemical analysis. Upon course completion, the student will be able to appreciate how the inner structure of elements dictates the chemical properties of elements, how elements bond together to form compounds. She/He will acquire basic laboratory skills required for chemical analysis and become familiar with data collection, record keeping and data analysis in a chemical laboratory.

Module I

Atomic Structure 21hrs

Introduction- Wave mechanical concept of the atom - Dual Character of electron-de Broglie equation- matter waves and electromagnetic waves - experimental verification of de Broglie relation - Heisenberg’s uncertainty principle - expression and physical significance. Schrodinger’s wave equation - Charge cloud and probability concepts - orbitals, radial and angular probability distribution curves, shapes of orbitals. Particle in a one-dimensional box. eigen functions and eigen values. Particle in a three dimensional box

Electronic Configuration and Periodicity

Quantum numbers - Pauli’s exclusion Principle - Aufbau Principle – Hund’s rule - Electronic configuration of atoms - classification of elements into s, p, d, f blocks - atomic radii, ionization enthalpy, electron gain enthalpy and electronegativity- Pauling’s scale, Mullikan and Alred - Rochow scale- ionic character - periodicity - horizontal, vertical and diagonal relationships - anomalous behaviour of the first element of a group.

Module II

Analytical Principles - I 21 hrs.

Qualitative Analysis - Common ion effect - solubility product - principle and procedure of elimination of interfering anions - precipitation of cations.

Quantitative Analysis - Calibration and use of apparatus and weights for titration.

Module III

Chemical bonding 21 hrs

Ionic bond-ionic solids and their structures, Rock salt, Rutile, Zinc blend, Wurtzite, radius ratio effect and coordination number, limitations of Radius ratio rule-lattice energy of ionic compounds-
Born-Lande equation, Born-Haber cycle, solvation energy and solubility of ionic solids- covalent character of ionic bond, Fajan’s rules

Covalent bond-valence bond theory and its limitations- hybridization, VSEPR theory and its applications-structure of XeF₂, XeF₄, XeF₆, ClF₃, IF₅, IF₇, NH₃, H₂O⁺& H₂O

VB theory of H₂ molecule, MO theory, LCAO of H₂ ion, homonuclear diatomic molecules-C₂, B₂, N₂, O₂ and ions like O₂⁻- heteronuclear diatomic molecules (HF, NO, and CO) – comparison of VB and MO theories Polarity of Covalent bond- dipole moment- percentage ionic character- dipole moment and molecular structure

Module IV

Chemical Bonding II

Metallic bonding- free electron theory, VB theory and band theory(Qualitative treatment only)- weak electrical forces – hydrogen bond, inter and intramolecular hydrogen bond, intermolecular interaction – induction forces and dispersion forces such as van der Waals forces, ion –dipole, dipole-dipole, ion-induced dipole, dipole-induced dipole, induced dipoleinduced dipole interactions.

Concepts of Acids and Bases Arrhenius theory, Lowry – Bronsted theory, Lewis theory. Hard and soft acids and bases, the SHAB principle, relative strength of acids and bases, effect of solvent on acid and base strengths

Evaluation of analytical data Significant figures, types of errors. standard deviation, relative standard deviation, Student t test , F test, Q test.

Module V

Nuclear Chemistry

Natural radioactivity, modes of decay, Geiger –Nuttal rule, artificial transmutation and artificial radioactivity- nuclear stability, n/p ratio, mass defect and binding energy, nuclear fission and nuclear fusion, elementary idea of subatomic particles like neutrino, anti neutrino applications of radioactivity- C¹⁴ dating, rock dating, neutron activation analysis and isotope as tracers

Module VI

Non Aqueous Solvents

General properties- classification- self ionization and levelling effect- reaction in non-aqueous solvents-protic and aprotic non aqueous solvents- examples- solutions of metals in liquid ammonia-self ionization of liquid ammonia- liquid SO₂, liquid HF.
Suggested Readings

1. A. I. Vogel, “Text book of Qualitative Analysis”
4. E.S. Gilreath “Fundamental concepts of Inorganic Chemistry”
6. M. C. Dey and J. Selbin “Theoretical Inorganic Chemistry”.
7. Madan “Inorganic Chemistry”.
8. Manas Chanda, “Atomic structure and Chemical Bond including Molecular spectroscopy”
9. Manku , “Theoretical principles of Inorganic Chemistry” -
SEMESTER II
Core Course
BV1243 Inorganic Chemistry – II

Credits: 3

Contact Hours: 162(Theory 108 + Practical 54)

Aim and Objective: The course is to impart a basic understanding of the principles of inorganic chemistry as the continuation of the previous course in inorganic chemistry. It will prepare the students to pursue studies in the biochemical and molecular aspects of biology and biotechnology.

Module I

Transition and inner transition elements 32 hours

Transition elements Electronic configuration and general characteristics - Comparison of 3d, 4d and 5d transition series – Colour, catalytic activities and spectral properties with reference to d¹ to d¹⁰ systems. Preparation, properties and uses of K₂Cr₂O₇, KMnO₄ and TiCl₄.

Module II

Coordination Chemistry 30 hours

– Isomerism – Structural and stereoisomerism – Geometrical and optical isomerism – Bonding in complexes

Module III

Organometallic Compounds and Bioinorganic Chemistry 25 hours

Organometallic Compounds Definition – Nomenclature and classification – sigma complex – Pi complex
– those containing both sigma and Pi bonds – 18 electron rule – Metal carbonyls – mononuclear and polynuclear (give examples of carbonyls of Fe, Co, Ni) – preparation and properties of carbonyls of iron and nickel – Bonding in organometallic compounds like ferrocene, dibenzene chromium, Ziese’s salt – Dinitrogen complexes – Application of organometallic compounds.

Bioinorganic Chemistry Role of metal ions in biological systems – Biochemistry of iron, haemoglobin
and myoglobin (elementary idea of the structure and mechanisms of their actions) – Photosynthesis – Sodium-Potassium pump - Biochemistry of magnesium and calcium (brief study only)

Module IV
Compounds of non-transition elements
25 hours

Manufacture and uses of the following Glass – different types of glasses, Silicates, Zeolites and Silicones.
Inorganic Polymers Phosphorus, boron and silicon based polymers – Structure and industrial applications.
Borax - boron hydrides, boron nitrides, borazole and carboranes.

Oxides and oxyacids of phosphorus. Oxides and oxyacids of halogens (structure only) – Inter halogen compounds and pseudo halogens – Compounds of noble gases – Uses of noble gases.
Refractory carbides, nitrides, salt-like carbides, borides, and silicides

Module V

Instrumental Methods of Analysis

Atomic absorption spectroscopy- flame emission spectroscopy- applications - spectrophotometry-laws of spectrophotometry- applications of spectrophotometry-colorimetry, thermal methods-introduction to TG, DTA and DSC- instrumentations and applications.

Module VI

Chemistry of Nanomaterials

Evolution of Nanoscience – Historical aspects- Preparations containing nano gold in traditional medicine.Lycurgus cup- Faraday’s divided metal, Nanosystems in nature. Preparation of nanoparticles: Top-down approaches and Bottom to top approach

Suggested Readings

1. Bosolo and Johnson, "Coordination Chemistry".
2. E. S. Gilreath, “Fundamentals of Inorganic Chemistry”.
4. H. S. Arniker, "Essentials of Nuclear Chemistry”.
5. J. D. Lee, “Concise Inorganic Chemistry”, ELBS
6. J. E. Hueey, "Inorganic Chemistry”.
8. M. C. Day and Selbin, "Theoretical Inorganic Chemistry”.
9. S. F. A. Kettle, "Coordination Chemistry”.
10. Shriver and Atkins, "Inorganic Chemistry”.
11. Sisler, "Non-aqueous Solvents”.
13. Willard, Merrit ,”Instrumental Methods of Analysis”.

SEMESTER II

Core Course

BV1244 Practical Chemistry-I

(Practical of BV1142 & BV1243)

Credits: 2
Contact hours: Practical Hours of the above courses

Aim and objective: This is the practical course based on the practical components contained in the theory of the respective courses- BV1142 & BV1243. It will give a working knowledge on the analysis of inorganic compounds.

Volumetry

a) Acidimetry and alkalimetry: Preparation of carbonate free sodium hydroxide. Use of constant boiling hydrochloric acid Titrations using (1) Strong acid – strong base (2) Strong base – weak acid (3) Strong acid – weak base, determination of Na₂CO₃ and NaHCO₃ in a mixture by indicator method and NH₃ in an ammonium salt by direct and indirect methods.

b) Permanganometry: The following determinations are to be done using standardised permanganate solution (1) Ferrous iron (2) Oxalic acid (3) Mohr’s salt (4) Hydrogen peroxide (5) Calcium (6) Nitrite and (7) MnO₂ in pyrolusite.

c) Dichrometry: Determination of Ferrous iron using internal and external indicators and Ferric iron after reduction with SnCl₂

d) Cerimetry: Standardisation of ceric ammonium sulphate with Mohr’s salt. Determination of oxalic acid using ceric ammonium sulphate.

e) Iodometry/Iodimetry: Standardisation of thiosulphate using KIO₃, electrolytic copper and potassium dichromate. Determination of a copper salt.

f) Precipitation titration: Determination of chloride in neutral medium.

g) Complexometry (using EDTA): Standardisation of EDTA solution with ZnSO₄ – determination of Zn, Mg, Ni and Ca – determination of permanent and temporary hardness of water.
b) **Colorimetry (Using photo electric colorimeter):** Determination of Iron using thiocynate and ammonia using Nessler’s reagent.

Suggested Readings

1. Bosolo and Johnson, ”Coordination Chemistry”.
2. E. S. Gilreath, “ Fundamentals of Inorganic Chemistry”.
4. H. S. Arniker,”Essentials of Nuclear Chemistry”.
5. J. D. Lee, “Concise Inorganic Chemistry”, ELBS
6. J. E. Hueey,”Inorganic Chemistry”.
7. J. E. Hueey ,”Inorganic Chemistry- Principles and Structure and Reactivity”.
8. M. C. Day and Selbin,”Theoretical Inorganic Chemistry”.
9. S. F. A. Kettle, “Coordination Chemistry”.
10. Shriver and Atkins,”Inorganic Chemistry”.
11. Sisler,”Non-aqueous Solvents”.
13. Willard, Merrit ,”Instrumental Methods of Analysis
SEMESTER III

Core Course

BV1343 Physical Chemistry I

Credits: 3

Contact hours: 180 (Theory 126 + Practical 54)

Aim and objective of the Course: The syllabus deals with the different states of matter, Thermodynamics and group theory. It familiarizes the student with the important topics like defects in crystals and point groups of molecules like water. Students become aware of the different states of matter, liquid crystals, basics of group theory and thermodynamic properties like entropy, enthalpy and free energy.

Module I

Gaseous state and solid state

Ideal gas equation, Behaviour of real gases, Deviation from ideal behaviour, Compressibility factor, Boyle temperature - van der Waal’s equation of state – derivation and importance, Virial equation of state, Collision frequency, Collision number, Collision diameter and mean free path.

Types of molecular velocities and their inter relations, Maxwell Boltzmann distribution of molecular velocities, Statement of equation and explanation (No derivation), Effect of temperature on most probable velocity, Derivation of root mean square, most probable and average velocities from the equation.

Critical phenomena: Isotherms of CO$_2$, continuity of states, Critical constants and their experimental determination, relation between critical constants and van der Waals constants.

Solid state Isotropy and anisotropy, Space lattice and unit cell, Elements of symmetry of crystals, Bravais lattices, Crystal systems, Laws of crystallography, Miller indices, Representation of lattice planes of cubic crystals, Determination of Avogadro number from crystallographic data, X-ray diffraction studies of crystals, Bragg’s equation – derivation and applications, Rotating crystal and powder method, Structure of NaCl and KCl Imperfections in crystals, point defects – Schottky and Frenkel defects, Non-stoichiometric defects.

Module II

Liquid state and Dilute solutions

Properties of liquids: Surface tension and its measurement by capillary rise and stalagmometer method, factors affecting Surface tension, Viscosity, Poisuelle’s equation, Determination of viscosity by Ostwald’s viscometer, Refractive index and its determination by Abbe refractometer.

Dilute solutions: Molarity, Molality, Normality and Mole fraction. Colligative properties, relative lowering of vapour pressure Thermodynamic derivation of “$T_b = K_b \times m$” and “$T_f = K_f \times m$”, Osmotic pressure, van’t Hoff equation and molecular mass, Isotonic solutions, Determination of molecular mass of solutes by Beckmann’s method, Rast’s method and cooling curve method. Abnormal molecular mass, van’t Hoff factor, Determination of degree of dissociation and association.

Module III

Thermodynamics I

36 hrs
Basic concepts- system, surroundings, types of systems. Extensive and intensive properties, macroscopic properties. State functions and path functions. Types of Processes, Zeroth law of thermodynamics

Definition of internal energy and enthalpy. Heat capacities at constant volume (C_v) and at constant pressure (C_p), relationship between C_p and C_v. Mathematical statement of first law. Reversible process and maximum work. Calculation of work, heat, internal energy change and enthalpy change for the expansion of an ideal gas under reversible isothermal and adiabatic condition.

Need for IInd law. Different statements of IInd law, Thermodynamic scale of temperature. Carnot cycle and its efficiency, Carnot theorem.

Concept of entropy- Definition and physical significance. Entropy as a function of volume and temperature, Entropy as a function of pressure and temperature. Entropy as a criteria of spontaneity and equilibrium.

Gibbs and Helmholtz free energies and their significances- criteria of equilibrium and spontaneity. Gibbs-Helmholtz equation, dependence of Gibbs free energy change on temperature, volume and pressure. Maxwell’s relations

Partial molar quantities- Chemical potential-Gibbs-Duhem equation. Concept of fugacity, determination of fugacity by graphical method.
Module IV

Chemical Kinetics

Order of reaction, Derivation of integrated rate equation of zero, first, second and third order reactions, n^{th} order reaction, determination of order of reactions:- Graphical and analytical methods using integrated rate equations, Fractional life- method, Differential rate equation method, Isolation method. Types of complex reactions:- (a) opposing reactions (b) consecutive reactions (c) parallel reactions (d) chain reactions (explanation and examples only).

Influence of temperature on rate of reaction: Arrhenius equation, Determination of Arrhenius parameter, Energy of activation and its significance. Collision theory, Derivation of the rate equation for a second order reaction based on collision theory, collision theory of unimolecular reactions, Lindemann mechanism, steady state approximation, Theory of absolute reaction rate. Photochemistry: Grothus-Draper, Beer- Lambert and Stark- Einstein laws, Quantum yield, Reason for very low and very high quantum yields, Rate equation for decomposition of hydrogen iodide, Qualitative treatment of $\text{H}_2\cdot\text{Cl}_2$ reaction and $\text{H}_2\cdot\text{Br}_2$ reaction, Fluorescence and phosphorescence, chemiluminescence and photosensitization, Explanation and examples

Module V

Group theory & Liquid crystals

Group theory: Elements of symmetry – Proper and improper axis of symmetry, plane of symmetry, centre of symmetry and identity element. Combination of symmetry elements, Point groups, C_{2v}, C_{3v} and D_{3h}, Group multiplication table of C_{2v}, Determination of point groups of simple molecules like H_2O, NH_3 and BF_3.

Module VI

Phase Equilibria 26 hrs

Phase Equilibria:- Terminology, the phase rule, thermodynamic derivation of phase rule and its application to (a) water system (b) sulphur system (c) solid-liquid equilibria involving simple eutectic system such as Pb-Ag system, KI-water system, freezing mixtures, thermal analysis and desilverisation of lead (d) solid-liquid equilibria involving compound formation with congruent and incongruent melting points:- FeC1₃-H₂O system and Na₂SO₄-H₂O system (e) solid–gas system-decomposition of CaCO₃, dehydration of CuSO₄.5H₂O, deliquescence and efflorescence.

Chemical and Ionic equilibria

Equilibrium constant and free energy, Thermodynamic derivation of law of mass action, relation between Kp,Kc and Kx, Reaction isotherm, Temperature dependence of equilibrium constant, Pressure dependence of equilibrium constant, Clausius-clapeyron equations and its applications.

Ionic equilibrium: Ionic product of water, Effects of solvents on ionic strength, levelling effect, Pkₐ and Pk₈ values, solubility product and common ion effect and their applications, pH and its determination by indicator methods, buffer action, Henderson’s equation, hydrolysis of salts of all types, degree of hydrolysis and hydrolytic constant, determination of degree of hydrolysis, relation between hydrolytic constant and ionic product of water.

(At least 100 problems are to be worked out from all units together. 30% of the questions for Examination shall contain problems.)

Suggested Readings

2. E A Moelwyn Hughes, “Physical Chemistry”, Pergamon Press
3. F Daniels and R A Alberty, “Physical Chemistry”, Wiley Eastern
SEMMESTER IV
Core Course
BV1444 Physical Chemistry II

Credits: 3

Contact hours: 180 (Theory 126 + Practical 54)

Aim and Objective: The aim of the course is to make the students aware of quantum mechanics, statistical thermodynamics, spectroscopic and non-spectroscopic methods of studying molecules and adsorption phenomena.

To introduce the basics of the developing fields such as spectroscopy, quantum mechanics and statistical thermodynamics.

Module I

Binary liquid systems & catalysis

Liquid-Liquid system:- Completely miscible, ideal and non-ideal mixtures, Raoult’s law, vapour pressure-composition and temperature-composition curves, fractional distillation, deviation from Raoult’s law, Azeotropic mixtures, partially miscible liquid system, critical solution temperature, Conjugate layers, example for upper, lower and upper cum lower CST, Theory of steam distillation, distribution law, its thermodynamic derivation, limitations of distribution law, application of distribution law to the study of association and dissociation of molecules, solvent extraction.

Catalysis: - Theories of catalysis, Intermediate compound formation theory, steady state method, Enzyme catalysis, Michaelis-Menten law.

Colloids and Adsorption

Gels: Elastic and non-elastic gels, Imbibition and syneresis, Micelles and critical micelle concentration, sedimentation and streaming potential, Application of colloids – Cottrell precipitator, purification of water and delta formation.

Module II

Electro motive force

Electrochemical cells (brief explanation) Reference electrodes-standard hydrogen electrode, calomel electrode, Types of electrodes-Metallic electrodes, anion reversible electrodes and redox electrodes, Electrode reactions and cell reactions, Derivation of Nernst equation for electrode potential and cell potential, Gibb’s Helmholtz equation and EMF of a cell, calculation of “G, “H and “S from EMF data.

Concentration cells with and without transference, electrode and electrolyte concentration cells, derivation of equation for the EMF of concentration cells with and without transference,

Redox electrodes and redox systems, formal redox potential, principle of redox indicators, over voltage and polarization.

Applications of potential measurement:- Determination of ionic product of water, hydrolysis constant and solubility product, pH value using quinhydrone and glass electrode, potentiometric titrations of acid-base and redox reaction.

Electrical conductance

Inter ionic attraction theory, Debye-Huckel-Onsager equation (Qualitative treatment only) activity and activity co-efficient of electrolytes, Kohlrausch’s law and its applications, wein effect, Debye-Falkenhagen effect, Walden’s rule.

Ionic mobilities:- Transference number and its determination by Hittorff’s and moving boundary methods, abnormal transference numbers, Applications of conductivity measurements:- Determination of degree of dissociation of weak electrolytes, degree of hydrolysis, solubility of sparingly soluble salts, conductometric titrations involving strong acid- strong base, strong acid-weak base, weak acid- strong base, weak acid-weak base and precipitation.

Module III

Thermodynamics III & Statistical thermodynamics

Nernst heat theorem, proof and its consequences. Statement of IIIrd law-Plank’s statement, Lewis Randall statement. Concept of perfect crystal, evaluation of absolute entropies of solid, liquid and gas. Exception to IIIrd law with reference to examples- CO, NO, N₂O and H₂O.

Phase space, system, assembly and ensemble-types of ensembles and uses. Thermodynamic probability, Boltzmann distribution law (no derivation). Partition function, entropy and probability. Thermodynamic functions in terms of partition functions - internal energy, enthalpy, pressure, work function and free energy function.

Module IV

Quantum mechanics

Radiation phenomena- blackbody radiation, photoelectric effect, Compton effect and atomic spectra. Planck’s quantum theory and explanation of the radiation phenomena.

Schrodinger wave equation – significance of Ø, well behaved functions, Concept of operators and some operators of interest (properties of operators not required), Postulates of quantum mechanics

Application of quantum mechanics to simple systems- particle in 1 D box, normalization of wave function, Particle in 3 D box. Concept of degeneracy. Application to hydrogen atom (no derivation) Schrodinger wave equation in Cartesian and spherical polar co-ordinates, Quantum numbers.

Module V

Spectroscopy

Regions of electromagnetic spectrum. Different units of energy (erg, joule, calorie, cm⁻¹, Hz, 0 A and eV) and their inter conversions. Interaction of radiations with matter. Various types of molecular spectra. Born-Oppenheimer approximation.

Rotational spectroscopy: microwave spectra of diatomic molecules, energy expression, selection rule, rotational energy levels, determination of bond length, effect of isotopic substitution.

Raman spectroscopy: Stoke’s and antistoke’s lines and their intensity difference, rotational Raman spectrum. Selection rule. Frequency of separation, vibrational Raman spectrum, Mutual exclusion principle.

Electronic spectroscopy: Franck-Condon principle. Singlet and triplet states dissociation and predissociation. Electronic spectra and diatomic molecules. Dissociation energy, electronic spectra of polyatomic molecules (qualitative idea only).

Surface properties: Examination of surfaces using ESCA, Auger, Scanning Tunneling Microscopy (STM) and Scanning Electron Microscopy (SEM).

(At least 100 problems are to be worked out from all units together. 30% of the questions for Examination shall contain problems).

Suggested readings

Core Course

BV 1445 Practical Chemistry II
(Practical of BV1343 & BV1444)

Credits: 2 Contact hours: 108 (Practical hours of BV1343 & BV1444)

Practicals of Physical Chemistry

The following experiments are to be practiced by the students:

1. Determination of the partition coefficient of iodine between CCl₄ and H₂O.
2. Transition temperature of a salt hydrate. Molar mass of a solute using transition point depression of a salt hydrate.
3. Molar mass of a solute. Depression in freezing point of a solid solvent by cooling curve method.
5. Viscosity of binary mixtures and then concentration of an unknown mixture.
6. Surface tension of binary mixtures and then concentration of an unknown mixture.
7. Refractive index of KCl solutions of different concentrations and then concentration of an unknown solution.
8. Conductometric titration of NaOH Vs HCl.
9. Potentiometric titration of Fe²⁺ vs Cr₂O₇²⁻.
10. Potentiometric titration of KMnO₄ Vs KI.
11. Determination of water equivalent of a calorimeter and heat of neutralisation of strong acid – strong base.
13. Influence of KCl impurity on miscibility temperature of phenol – water system and then the determination of concentration of a given KCl solution.

SEMESTER V

Core Course

BV1543 Organic Chemistry I

Credits Contact hours: 180 (Theory 108 + Practical 72)

Aim and Objective: The syllabus includes hybridization, mechanism of reactions, aromaticity and the chemistry of aliphatic and aromatic substituted compounds.

It learns the behaviour of aliphatic and aromatic compounds like aromatic aldehydes, ketones and halides. By studying these topics the students get an idea of the mechanism of reactions of organic compounds and hybridization.
Module I

Hybridisation and various types of reagents 36 hrs
Hybridisation – sp³, sp² and sp, structure and shapes of simple organic molecules, bond lengths, bond angles and bond energy, Electron displacement effects – inductive effect, electromeric effect, hyperconjugation, resonance, steric effect. Homolytic and heterolytic fission.

Reaction mechanisms
Mechanism of addition of hydrogen, electrophilic and free radical addition, Markownikoff’s rule and kharasch effect. Mechanism of nucleophilic and electrophilic addition reactions, Nucleophilic and electrophilic substitution reactions, elimination reactions – E1, E2, S_N1, S_N2 and S_Ni reactions and mechanisms. Study of reactions of hydroboration, epoxidation, ozonolysis, hydration, cis-hydroxylation.

Module II

Arenes & Aromaticity 36 hrs
Nomenclature of benzene derivatives, Aromaticity, Huckel’s rule, Non- benzenoid aromatic compounds – 5 membered and 7 membered ring compounds- structure of benzene.

Substituted Arenes, Alkyl halides & Aryl halides Methods of formation of alkyl benzenes, alkynyl benzenes, and biphenyl. Preparation and properties of aryl halides.

Alkyl halides: Nomenclature and classes of alkyl halides, preparation and properties, Synthetic uses of vinyl chloride, chloroform, carbon tetrachloride, trichloroethylene, chloroprene, Freon12, DDT, BHC.

Module III

Alcohols & Phenols 36 hrs

Phenols: - Preparation and properties of phenols. Acidity of phenols and its comparison with alcohols and acids. Effect of substituents on acid strength of Phenols. Industrial Importance of methanol, ethanol – Absolute alcohol methylated spirit, power alcohol, allyl alcohol, benzyl alcohol, picric acid, quinol and nitro phenols.

Aldehydes and Ketones
Aldehydes and Ketones: - General methods of preparation and properties of aldehydes and ketones (both aliphatic and aromatic). Reduction with LiAlH₄, Sodium borohydride, Aluminium Iso Propoxide Wolf-Kishner reduction, Clemmenson reduction. Test to distinguish aldehydes and ketones.
Condensation reactions and its Mechanisms – Aldol condensation, mixed and crossed aldol condensation and benzoin condensation. Preparation and uses of crotonaldehyde, mesityl oxides, cinnamaldehyde, salicylaldehyde, vanillin, naphthaquinone and anthraquinone.

Ethers, Carboxylic acids and their derivatives 18 Hrs

Module V

Stereochemistry of Organic Compounds. 27 hrs

Optical isomerism: elements of symmetry, chirality, steriogenic centre, enantiomers, chiral and achiral molecules with two stereogenic centres, dia stereo isomers, meso compounds, resolution, inversion and racemization reaction. Asymmetric synthesis, absolute configuration, sequence rule, D-L, R-S systems of nomenclature. Optical activity of compounds having no chiral carbon (Allenes and Biphenyls).

Geometrical isomerism: E - Z systems of nomenclature. Geometric isomerism in maleic and fumaric acid and butadiene.

Conformational isomerism: Configurational analysis of ethane, n – butane and cyclohexane. Newmann projection formula and Sawhorse formula.

Module VI

Carbohydrates 27 Hrs

Polysaccharides: - Starch and Cellulose - Preparation, properties and structure of starch and cellulose (structural elucidation not expected). Industrial application of cellulose.

Suggested readings

1. Arun Parikh, Hansa Parikh, Khyati Parikh, “Name Reactions in Organic Synthesis”.
Aim and Objective of the Course: The syllabus deals with organic compounds like ethers, acids, carbohydrates, aminoacids, proteins, nucleic acids, oils, fats, detergents, vitamins, terpenes, alkaloids, hormones and enzymes and their properties and the stereochemistry of organic compounds.

The students will get an interesting idea about the stereochemistry of organic compounds and the preparation and properties of organic compound

Module I
Amino acids, Proteins and Nucleic acids

Amino acids: - Classification, structure and stereochemistry of amino acids, essential and non essential amino acids, zwitter ion, isoelectric point, General methods of preparation and reactions of \(\alpha \) - amino acids.

Peptides: structure and synthesis (Carbo benzoxy method, Sheehan method only).

Proteins: - Structure of proteins, denaturation and colour reactions.

Nucleic acids: - Classification and structure of DNA and RNA. Replication of DNA, Genetic Codes.

Module II
Oils, Fats, Detergents, Alkaloids and Terpenes

Oils and Fats: - Occurrence and extraction. Common fatty acids, soap, saponification value, iodine value, acid value, synthetic detergents and detergent action, alkyl and aryl sulphonates. Alkaloids: - Extraction and structural elucidation of conine, nicotineand importance of quinine, morphine and codeine.

Terpenes: - Essential oils, isolation of citral and geraniol (No structural elucidation) Isoprene and special isoprene rule.

Module III
Vitamins, Hormones, Enzymes and Synthetic Reagents

Vitamins: - Classification and important sources, physiological action and deficiency symptoms of vitamin A, B\(_1\), B\(_2\), B\(_{12}\), C, D, E and K.

Hormones: - Introduction, steroid and sex hormones – examples and functions (Structure not expected).

Enzymes: - General nature and classification, specificity of enzymes. Synthetic reagents: -

Module IV
Organic Synthesis, Rearrangements, Synthetic Polymers and Dyes

Study of reactions and mechanisms of Meerwin-Pondorf-Verley reductions, Gattermann-Koch reaction, Gattermann aldehyde synthesis, Claisen condensation, Knoevenangal reaction, Perkin reaction, Cannizaro reaction, Reimer-Tiemann reaction, Sandmeyer reaction & Wittig reaction, Mechanism of Pinacol-Pinacolone rearrangement, Claisen rearrangement, Fries rearrangement, Benzidine rearrangement and Beckmann rearrangement.

Biodegradable polymers- two examples- starch and cellulose. Number average molecular weight and weight average molecular weight of polymers. Composites (refer any two)

Dyes- Theory of colour and constitution, classification of dyes, synthesis of methyl orange, congo red, malachite green, crystal violet, phenolphthalein, fluorescein, alizarin and indigo

Module V

Organic Sulphur and Nitrogen compounds

Aromatic sulfur compounds –Preparation and applications of benzene sulphonlic acids, toluene sulphonlic acid, benzene sulphonyl chloride, sulphanilic acid, sulphanilamide and sulpha drugs-sulphapyridine, sulphathiazole, sulphadiazine, sulphaguanidine and sulphacetamide.

Module VI

Organic Spectroscopy

UV-Visible Spectroscopy- absorption, types of electronic transitions, effect of conjugation, concept of chromophore, auxochrome, bathochrome, hypochromatic shifts, hyperchromic and hypochromic effects. UV-Visible spectra of enes. Calculation of ε_{max}.

IR Spectroscopy- molecular vibrations, factors influencing vibrational frequencies, inductive effect and hydrogen bonding. Finger print region and interpretation of IR spectra of simple organic molecules such as phenol, acetone, acetanilide, benzaldehyde.

NMR spectroscopy- Proton NMR- shielding and deshielding effect, chemical shift, factors influencing chemical shift, spin-spin splitting, coupling constant, interpretation of PMR spectrum of simple molecules like ethylbromide, pure ethanol and impure ethanol(acidic impurities), acetaldehyde and toluene. Basic knowledge of 13C NMR

Mass spectrometry- Theory of mass spectrum, base peak and molecular ion peak, types of fragmentation, McLafferty rearrangement, isotopic effect. Applications- determination of molecular mass.
Suggested Readings

1. Arun Parikh, Hansa Parikh, Khyati Parikh, “Name Reactions in Organic Synthesis”.
12. Reinhard Bruckner, ”Advanced Organic Chemistry Reaction Mechanism”.

SEMESTER VI

Core Course

BV1644 Practical Chemistry-III
(Practical of BV1543 & BV1643)

Credits: 3 Contact hours: 108 (Practical Hours of BV1543 & BV1643)

I. Gravimetry

The following determinations are to be done using silica crucible (1) Ba as BaSO\(_4\) (2) Sulphate as BaSO\(_4\) (3) Iron as Fe\(_2\)O\(_3\) (4) Calcium as CaCO\(_3\) (5) Aluminium as Al\(_2\)O\(_3\) and Magnesium as Mg\(_2\)P\(_2\)O\(_7\).

The following determinations are to be done using sintered crucible Magnesium as oxinate (2) Nickel using dimethyl glyoxime (3) Copper as copper thiocyanate and Silver as silver chloride

II. Organic Chemistry Practicals

1. Tests for elements: Nitrogen, halogens and sulphur
2. Determination of physical constants
3. Studies of the reactions of common functional groups using known organic compounds.
4. Qualitative analysis with a view to characterization of the functional groups. The following compounds may be given for the analysis: chlorobenzene, benzyl chloride, phenol, o – m – p – cresols, naphthols, resorcinol, benzaldehyde, acetophenone, benzophenone, benzoic, phthalic, cinnamic and salicylic acids, ethyl benzoate, methyl salicylate, benzamide, urea, aniline, o, m, p – toluidines, dimethylaniline, nitrobenzene, o – nitro toluene p – nitro toluene, m – dinitrobenzene, naphthalene, anthracene, glucose and sucrose.
5. Organic preparations involving halogenation, nitration, oxidation, reduction, acetylation benzoylation, hydrolysis and diazotisation.

III. Chromatography

Paper chromatographic separation of mixture of nitroanilines, amino acids and sugars.
Separation of a mixture of dyes by column chromatography.
IV. Organic estimation

a) Molar mass determination of an acid and base by titration method
b) Determination of the phenol/aniline by bromate – bromide mixture.

Suggested Readings

1. A. Findlay, “Practical Physical Chemistry”
3. A.I. Vogel, “A text book of Qualitative Inorganic Analysis” Longmass
6. E.S. Gilreath “Qualitative Analysis using semi micro method” Mc Graw Hill
7. Mann and Saunders, “Practical Chemistry”
8. N.K., Vishnoi, “Advanced practical organic chemistry” Vikas publishing house, New Delhi
10. V.V. Ramanujam, “Semi micro Qualitative Analysis”
Core Courses of Biotechnology

SEMESTER I

Core Course

BV1143 Biochemistry & Metabolism

Credits: 4
Contact hours: 126 (Theory 54 + Practical 108)

Aim and Objective: The course will impart a basic understanding about the concept of the biochemical basis of phenomenon life and metabolic reaction of cells that are essential for the sustenance of life. It specially focuses on the development of analytical skills in biochemistry by giving more importance to the laboratory experiments of biochemistry.

Course outcome: The course explores the impact of biochemistry on bioenergy and health.

Module I 6hrs

Structural features of water molecule, dissociation of water, ionic product of water, acids and bases, concepts of pH, pOH, theoretical calculations of pH and pOH, dissociation of weak acids, buffers buffer action and buffer capacity, buffers in biological system, Henderson – Hasselbalch equation, titration curve of weak acids, simple numerical problems involving application of this equation.

Module II 8hrs

Solutions: Expression of concentration- normality, molality, molarity, percentage solution, mole fraction, parts per million, Problems related to concentrations.

Colloids: Definition of true solution, suspension, colloids and crystalloids, lyophilic and lyophobic colloids, Properties of colloids, biological significance of colloids, emulsions and emulsifying agents,

Diffusion, osmosis, osmotic pressure, Vant Hoff’s laws of osmotic pressure, definition of isotonic, hypertonic and hypotonic solutions, biological importance of osmosis, surface tension, viscosity.

Module III 10hrs

Carbohydrates: Classification, optical isomerism, D and L series, epimers, aldoses and ketoses, structural relationships of aldoses, ring structure of monosaccharides, anomers, mutarotation, chemical reactions of glucose and fructose, glycosides, deoxy sugars, amino sugars, sugar alcohols and sugar acids, ozazone, disaccharides, structure and important properties of sucrose, maltose and lactose, Trisaccharide (examples only), structure and important properties of polysaccharides-starch, glycogen, cellulose, and chitin.

Metabolism of carbohydrates: Glycolysis, Citric acid cycle, electrontransport system and oxidative phosphorylation (Outline only without structure), Energy balance of cellular oxidation of glucose.
Biosynthesis of carbohydrate- photosynthesis- photochemical reaction, dark reactions. Qualitative test for various types of carbohydrates.

Module IV 10 hrs

Lipids: Classification of lipids, fatty acids, structure and properties, reactions of fatty acids, essential fatty acids, chemical composition of triglycerides, triglycerides- general structure and properties, acid number, Saponification number and iodine number fats, glycerol, Acrolein test, Phospholipids, derivatives of phospholipids- glycerophosphates, sphingosine phosphate, nonphosphorylated sphingolipids- cerebrosides, gangliosides, sulphatides, (structure only). Steroids- structural features, sterols, structure of cholesterol and ergosterol. Colour reactions of sterols.

Biosynthesis and breakdown of lipids- scheme of â-oxidation (stearate and palmitate as examples) and regulation, Basics of ù amd á- oxidation, Ketone body formation, Fatty acid biosynthesis and regulation, outline of the synthesis of triglycerides.

Module V 6 hrs

Amino acids and proteins: Classification of amino acids, amino acids occurring in proteins, optical activity, UV absorption, Zwitterions, chemical reactions of amino acids, proteins, biological significance, classification – fibrous proteins, globular proteins, conjugated proteins, complete hydrolysis of proteins, separation and identification of amino acids by paper chromatography.

Proteins: Physical properties, solubility, isoelectric point and isoelectric precipitation,

Protein structure: study of primary secondary, tertiary and quaternary structure of proteins, colour reactions, precipitation reactions, denaturation, biologically important peptides (glutathione), haemoglobin-structure and function, types of plasma proteins.

Module VI 8hrs

Enzymes: Classification and nomenclature, units of enzyme activity, progress curve, effect of enzyme concentration, substrate concentration, temperature and pH on reaction velocity of enzyme catalyzed reactions. Michaelis- Menten constant, enzyme affinity, Michaelis- Menten equation (Derivation not expected),Enzyme specificity, different types , enzyme activation , enzyme inhibition- competitive and non-competitive , Line weaver – Burk plot, application of LB plot, allosteric regulation (Brief study) purification of enzymes, criteria of purity, coenzymes.

Module VII 6 hrs

Nucleic acids: Base compositions, structure of purines and pyrimidines, ribose and deoxy ribose, nucleoside structure, nucleotides- nomenclature, structure of polynucleotide – DNA, RNA primary structure and inter nucleotide linkage, Watson and Crick double helix model of DNA, different types of RNA.

Practical

Familiarization and Practice of the following techniques and concepts

11. Weighing in Chemical balance
12. Preparation of solutions
13. Percentage, molar & normal solutions, dilution from stock solution etc.
14. Demonstration of dialysis
15. Demonstration of PAGE
16. Demonstration of Paper Chromatography
17. Demonstration of Thin Layer Chromatography
18. Colorimetry and Spectrophotometry techniques
19. Verification of Beer Lambert’s law
20. Verification of molar extinction coefficient of any known compound

Carbohydrates

Qualitative analysis of Carbohydrates.

Carbohydrates-Glucose, Fructose, Galactose, Xylose, Sucrose, Maltose, Lactose, Starch & Dextrin

Tests- Molisch’s test, Anthrone test, Fehling’s test, Benedict’s test, Picric acid test, Barfoed’s test, Bial’s test, Seliwanoff’s test, Foulger’s test, Phloroglucinol test, Mucic acid test, Iodine test, Hydrolysis of Sucrose and Starch, Osazone test.

Quantitative Analysis of carbohydrates

- Estimation of glucose by Nelson-Somogyi method
- Estimation of reducing sugar by anthrone method.
- Estimation of pentose by Orcinol method.
- Estimation of ketose by Roe-Papadopoulos method.

Lipids

Qualitative analysis of Lipids

Fatty acids: Stearic acid, Oleic acid. Tests- Solubility, Translucent spot tests, Test for Unsaturation

Glycerol

- Tests- Acrolein, Solubility.

Triglycerides

- Tests- Solubility, Saponification, Translucent spot test

Cholesterol

- Tests- Solubility, Salkowski reaction, Liebermann-Burchard reaction

Quantitative Analysis of Lipids

- Estimation of Cholesterol by Zak’s method.
- Determination of Acid Value.
- Determination of Saponification value.
- Determination of Iodine number of oil

Amino acids and Proteins
Qualitative analysis of Amino acids and Proteins

Amino acids- (Tyrosine, Glycine, Tryptophan, Histidine, Arginine, Cysteine, Cystine, Proline, Methionine)
(single components only need be given)

Tests- Solubility, Ninhydrin reaction, Xanthoproteic reaction, Millons test, Morners test, Glyoxalic acid test, Ehrlich’s test, Nitroprusside test, Lead acetate, Test for Methionine, Aldehyde test, Sakaguchi reaction, Isatin test

Proteins-Ovalbumin and Casein Tests-Solubility, Ninhydrin reaction, Xanthoproteic reaction, Folin’s test, Lowry’s test, Biuret test, Heat denaturation, TCA precipitation, Metal precipitation, Alcohol precipitation.

Quantitative Analysis of Amino acids and Proteins
Estimation of Tyrosine by Folin-Lowry method.
Estimation of Protein by Biuret method.
Estimation of Protein by Folin-Lowry method.
Estimation of Protein by Bradford’s method.

Nucleic Acids

Quantitative Analysis of Nucleic Acids

Estimation of DNA by diphenylamine method.
Estimation of RNA by Orcinol method

Enzyme Assays

Assay of any two of the following enzymes

Salivary amylase/ acid phosphatase/lysozyme
Kinetics of salivary amylase / acid phosphatase (Effect of pH, substrate Concentration, enzyme concentration and temperature)
Progress curve of salivary amylase / acid phosphatase

Suggested Readings

8. Introductory Practical Biochemistry, S. K. Sawhney & Randhir Singh (eds) Narosa Publishing House, New Delhi,

SEMESTER II
Core Course
BV1245 Microbiology

Credits- 2 Contact hours-126 (Theory 72 + Practical 54)

Aim of the course: Microbiology works with function, structure, uses and existane of microscopic organisms. This course aims to provide a thorough understanding of microbial world, genetics, metabolism and culture.

Course outcome: Student will be able to understand the scope of microbiology in various fields such as Pharmacy, Medicine, Clinical research, Agriculture, Dairy industry, Water industry etc and gain practical knowledge on handling and culturing microbes.

Module I

Introduction 10 hrs
Scope and history of microbiology: Pasteur’s experiments, concept of sterilization, methods of sterilization - dry heat, wet heat or steam, radiation, chemical and filtration.

Classification of microorganisms: bacteria, archae, virus, fungi, protozoa, mycoplasma (PPLO)
Concept of microbial species and strains
microbial cell surfaces (gram positive and gram negative bacteria)
classification of bacteria by Haeckel, Woese et al and Cavalier Smith- a brief account.
Nutritional classification of bacteria.
Motility in bacteria, flagella-structure and distribution in bacterial cell.

Viruses:
Bacteriophage, DNA and RNA phages, T4 phage, Phage culture, Lytic and lysogenic life cycles.

Module II

Bacterial cell structure and Growth
- Eukaryotic cells and prokaryotic cells, Glycocalyx, bacterial cell membranes, bacterial cell wall, cytoplasm, spores, organs of locomotion, chemotaxis, ribosomes and nucleoid- bacterial chromosome.

Bacterial Growth curve, Measurement of growth, factors affecting growth of bacteria.

Bacterial culture media: composition, types (synthetic media, simple and complex media), uses.

Isolation of pure culture: Spread plate, streak plate, pour plate etc.

Isolation of anaerobs and its culture techniques, sub culture methods (slant culture and stab culture.)

Bacterial Metabolism

Nutrition in bacteria- classification based on nutrition- autotrophic and heterotrophic organisms, Photosynthetic and chemosynthetic organisms- purple sulfur bacteria, photosynthetic bacteria, Saprophytes and pathogenic parasites.

Energy production in bacteria- Energy and ATP.

Aerobic respiration: Glycolysis and tricarboxylic acid cycle, Electron transport and oxidative phosphorylation in Bacteria, catabolism of other carbohydrates.

Anaerobic respiration- Fermentation- alcohol fermentation by yeasts and bacteria, lactic acid fermentation by lactobacillus, acetic acid fermentation by acetobacter, Methanogenic bacteria,

Application of bacterial metabolism in industry and agriculture

Module III

Bacterial genetics
Transfer of genetic information in bacteria, Bacterial chromosomes- DNA, Plasmids (definition and types - non-conjugative, conjugative (mobilizable plasmids), R, Col, F plasmids).

Bacterial Mutation – Spontaneous mutation, induced mutations, Repair mechanisms, transposons in bacteria, overlapping genes.

Bacterial recombination:
Transformation- Griffith’s effect, evidence of DNA as genetic material.
Transduction- characteristics of transducing bacteriophages, Lambda phage- structure & multiplication in bacteria (lytic phase and lysogenic phase), bacterial recombination through transduction- generalized and specialized.
Conjugation- Fertility factors, F+ and F- cells, Hfr Phages and plasmids as vectors for genetic engineering.
Bacterial recombination and transferable drug resistance mechanism.

Genetic homogeneity
Spontaneous and induced variations in microbes, Isolation of auxotrophs- replica plating technique and analysis of mutations in biochemical pathways, Microbial assays for vitamins and antibiotics.

Module IV

Microbes in extreme environments 7 hrs
Thermophiles and alkalophiles,

Microbial associations: symbiosis and antibiosis among microbial population, nitrogen fixing bacteria in agriculture and forestry, pathogenic microorganisms- bacteria, fungi, viruses, protozoans and mycoplasma, defense mechanism against microorganisms,

Bio geo chemical cycles: Role of bacteria in carbon, nitrogen, sulphur and phosphorous cycle in nature.

Module V

Industrial microbes and their uses 7 hrs
Production of food (dairy and SCP) and drugs (antibiotics such as penicillin & streptomycin), products of fermentation, Strain improvement by mutation and recombination, production of heterologous proteins of interest in microorganisms by recombinant DNA technique.

Module VI 15 hrs

Microbial Diseases of Humans
Bacterial diseases of Humans
1. Airborne bacterial diseases- tuberculosis, Pneumonia (streptococcal, Pneumococcal), Diphtheria, Pertussis
2. Foodborne and waterborne bacterial diseases- A) *intoxications*- Botulism, Staphylococcal food poisoning. B) *infections*- Typhoid fever, salmonellosis, Cholera, Shigellosis, *E.coli* Diarrheas, Brucellosis

Viral diseases of Humans
1. Pneumotrophic viral diseases-Influenza, Adenoviral infections, Rhinoviral infections,
2. Dermatoviral diseases- Herpes simplex, Chickenpox, Measles, Rubella.
3. Viscerotrophic Viral diseases- yellow fever, Dengu fever, AIDS
4. Neurotropic viral diseases- Rabies, Polio

Control of microorganisms
Physical agents, chemical agents, antibiotics and other therapeutic agents.

Experiments for Microbiology Practical 54 hrs
1. Use of Microscope
2. Sterilization and aseptic techniques-preparation and sterilization of glassware and solutions
3. Media Preparation- Preparation of Luria-Bertani medium and Nutrient agar and sterilization (Broth and plates)
4. Isolation and Identification of E.coli from water samples and its identifications.
5. Screening of enterobacteria from water samples and its identification
6. Examination of microbial flora of the available soil and water samples
7. Serial dilution of bacterial cultures and plating to find out population density of microbes in a given sample
8. Isolation of bacteria from soil, water and air-a) Pour plate method, b) Streak plate method for isolation and colony purification.
9. Isolation of microorganisms from spoiled food materials
10. Microbiological examination of various types of waters including commercial and ordinary drinking water
11. Staining of bacteria-simple staining (Methylene blue stain), Gram staining, Acid fast staining, Negative staining, bacterial spore staining
12. Microscopic tests for bacterial motility (Hanging drop method)
13. Identification of bacterial and fungal cultures microscopically: Gram staining and lactophenol cotton blue method
14. Antibiotics sensitivity tests: Kirby bauer method
15. Growth of Bacteria in liquid media: Determination of kinetics of bacterial growth,bacterial growth curve
16. Isolation of starch degrading microorganisms- fungus and bacteria and the assay of the enzymes (α-amylase assay)
17. Fermentation techniques- Determination of substrate utilization with respect to growth kinetics
18. Curdling of milk, Isolation of lactobacillus from curd and its identification
19. Isolation of yeast from fruit samples and its culturing.
20. Examination of microbial flora of the skin and mouth.
21. Environmental distribution of microorganisms- extremophiles
22. Isolation and examination of Throat and nasopharyngeal cultures
23. Inhibition and destruction of microorganisms by antibacterial chemicals
24. Production of exoenzymes by bacteria- isolation of alpha amylase producing bacteria and its culturing for the production of alpha amylase
25. Plaque-forming Bacteriophage
Suggested Readings

1. A Textbook of Microbiology – P. Chakraborthy, New central Book agency Pvt. Ltd, calcutta
5. Microbiology – L M Prescott, Brown Publishers, Australia
7. Modern concept of Microbiology – D D Kumar, S Kumar; Vikas Publishing House Pvt. Ltd. New Delhi

SEMESTER II
Core Course
BV1246 Biotechniques- I
(Practical of BV1143 BV1245)
Credit 2
Contact hours: Practical hours of BV1143 & BV1245
Aim and Objective: This course is the practicals of the course BV1143 and 1245, which gives hands on training on the analytical techniques and experiments of Biochemistry and Microbiology which are the core components of Biotechnology experiments
Experiments for Biochemistry and Metabolism (BV1143) 72 hrs
Familiarization and Practice of the following techniques and concepts
Weighing in Chemical balance
Preparation of solutions- percentage, molar & normal solutions, dilution from stock solution etc.
Demonstration of dialysis
Demonstration of PAGE
Demonstration of Paper Chromatography
Demonstration of Thin Layer Chromatography
Colorimetry and Spectrophotometry techniques
Verification of Beer Lambert’s law
Verification of molar extinction coefficient of any known compound
Carbohydrates
Qualitative analysis of Carbohydrates.
Carbohydrates-Glucose, Fructose, Galactose, Xylose, Sucrose, Maltose, Lactose, Starch & Dextrin
Tests- Molisch’s test, Anthrone test, Fehling’s test, Benedict’s test, Picric acid test, Barfoed’s test, Bial’s test, Seliwanoff’s test, Foulger’s test, Phloroglucinol test, Mucic acid test, Iodine test, Hydrolysis of Sucrose and Starch, Osazone test.
Quantitative Analysis of carbohydrates
Estimation of glucose by Nelson-Somogyi method
Estimation of reducing sugar by anthrone method.
Estimation of pentose by Orcinol method.
Estimation of ketose by Roe-Papedopaulose method.

Lipids
Qualitative analysis of Lipids
Fatty acids: Stearic acid, Oleic acid.
Tests- Solubility, Translucent spot tests, Test for Unsaturation

Glycerol
Tests- Acrolein, Solubility.

Triglycerides
Tests-Solubility, Saponification, Translucent spot test
Cholesterol Tests- Solubility, Salkowski reaction, Liebermann-Burchard reaction

Quantitative Analysis of Lipids
Estimation of Cholesterol by Carr-Drecktor method.
Estimation of Cholesterol by Zak’s method.
Determination of Acid Value.
Determination of Saponification value.
Determination of Iodine number of oil

Amino acids and Proteins
Qualitative analysis of Amino acids and Proteins
Amino acids- (Tyrosine, Glycine, Tryptophan, Histidine, Arginine, Cysteine, Cystine, Proline, Methionine)
(single components only need be given)
Tests- Solubility, Ninhydrin reaction, Xanthoproteic reaction, Millons test, Morners test, Glyoxalic acid test, Ehrlich’s test, Nitroprusside test, Lead acetate, Test for Methionine, Aldehyde test, Sakaguchi reaction, Isatin test
Proteins-Ovalbumin and Casein
Tests-Solubility, Ninhydrin reaction, Xanthoproteic reaction, Folin’s test, Lowry’s test, Biuret test, Heat denaturation, TCA precipitation, Metal precipitation, Alcohol precipitation.

Quantitative Analysis of Amino acids and Proteins
Estimation of Tyrosine by Folin-Lowry method.
Estimation of Protein by Biuret method.
Estimation of Protein by Folin-Lowry method.
Estimation of Protein by Bradford’s method.
Nucleic Acids

Quantitative Analysis of Nucleic Acids
Estimation of DNA by diphenylamine method.
Estimation of RNA by Orcinol method

Enzyme Assays
Assay of any two of the following enzymes
Salivary amylase/ acid phosphatase/lysozyme
Kinetics of salivary amylase / acid phosphatase (Effect of pH, substrate Concentration, enzyme concentration and temperature) Progress curve of salivary amylase / acid phosphatase

Experiments for Microbiology (BV1245) 54 hrs

1. Isolation of lactic acid bacteria from curd.
2. Lactic acid fermentation using lactose as substrate.
3. Isolation of yeast from fruit samples.
4. Isolation of starch degrading microorganisms- fungus and bacteria and the assay of the enzymes.
5. Production of alpha amylase by Aspergillus niger.
6. Fermentation techniques- Determination of substrate utilization with respect to growth kinetics
7. Isolation and identification of E.coli from water samples and its identifications.
8. Environmental distribution of microorganisms -Examination of microbial flora of the available soil and water samples,
9. Isolation of microorganisms from spoiled food materials
10. Isolation of lactobacillus from curd and its identification
11. Examination of microbial flora of the skin
12. Examination of the microbial flora of mouth.
13. Isolation and examination of Throat and nasopharyngeal cultures.
14. Inhibition and destruction of microorganisms by antibacterial chemicals.
15. Production of exoenzymes by bacteria- isolation of alpha amylase producing bacteria and its culturing for the production of alpha amylase
16. Plaque-forming Bacteriophage
SEMESTER III
Core Course
BV1344 Food and Industrial Biotechnology

Credits: 4 Contact Hours: 90 (T 54 + P 36)

Aim and Objective: The students will be introduced to the industrial application of Food Biotechnology and Bioprocess technology through this course. Students should be trained to understand commercial importance of biotechnology through its industrial aspects.

Course Outcome: Students will be able to understand the potential of food and industrial biotechnology and career opportunities in industries R & D

Module I
6 hrs

Concepts and development-Microbes in industry- Industrially important microorganisms, screening and isolation; Important industrial fermentation products- an overview.

Module II
8 hrs

Fermentation
The biological process of fermentation- various types of fermentation, alcohol fermentation, scale up of biological reactions in to bioprocess; Bioreactors-types of bioreactors / Fermentors, parts of a bioreactor.

Module III
10 hrs

Upstream Processing: Media for fermentation, characteristics of ideal production media, media sterilization, aeration, pH, temperature; batch fermentation, continuous fermentation, chemostatic cultures

Down stream processing: Down stream processing and product recovery, Different physical and chemical methods for the separation of fermentation products

Module IV
10 hrs

Agricultural waste and food industry wastes as the substrate for fermentation, solid state fermentation; production of single cell proteins, microbial production of enzymes- protease and amylase; Immobilization of cells and enzymes-applications

Module V
6 hrs

Microbial production of antibiotics-Penicillin, vitamins- B_{12}, amino acids- Glutamic acid; Organic acid-Citric acid; Beverages- beer, wine; solvents- ethanol, butanol.

Module VI
14 hrs

Food Biotechnology

Fermented foods- Industrial process of cheese, yoghurt, sauerkraut making.

Food spoilage: types of spoilage, microbes in food spoilage -canned foods, meat, fish. Hazardous effect of food spoilage- food poisoning, mycotoxins, food borne diseases and intoxications

Food preservation- principles of preservation of foods, methods of food preservation, biopreservatives
Dairy Biotechnology - Microbes in dairy industry, contamination, spoilage, dairy products, pasteurization, milk borne diseases

Practicals
Experiments for Industrial Biotechnology Practical
36 hrs

1. Isolation of yeast from fruit samples and its culturing.
2. Preparation of media for alcohol fermentation by yeast.
3. Preparation of Ethyl alcohol from glucose by Yeast fermentation
4. Separation and quantification of ethanol by distillation (demonstration)
5. Production of wine (Demonstration)
6. Isolation of microorganisms from spoiled food and identification
7. Isolation of organisms from curd/milk and fermentation of lactose
8. Demonstration of setting laboratory fermentor - basic features, purpose, procedure

Industrial Visit:
The students are required to visit an industry related to the subject in semester 3. A detailed report of the industrial visit must be submitted by each student for evaluation on the day of practical examination Biotechniques II, in semester 4.

Suggested Reading
1. Fermentation technology- Whittaker,
4. Fundamentals of Microbiology, Jones & Bartlett Publishers, Boston, USA.

SEMESTER III

Core Course

BV1345 Molecular Biology

Credits 4
Total contact hours 90 (T 54 + P 36)

Aim and Objective: Molecular biology is basis of modern biology and biotechnology. This course imparts a very essential foundation for the proper understanding of life at molecular level, which is essential for further studies related to genetic engineering, immunology and other modern applied aspects of biology.
Outcome of the course: The student gains basic understanding of molecular basics of life, and become able to learn structure and functioning and regulation of genes in prokaryotes and eukaryotes.

Module I

Introduction
History and significant discoveries in molecular biology, Molecular basis of life, Experiments demonstrating DNA as the genetic material, Structure of DNA, replication of DNA – both prokaryotic and eukaryotic, enzymes of DNA replication

Module II

Genes
Structure of prokaryotic gene: operon, organization of operon, polycistronic mRNA and its translation, polysomes.
Eukaryotic genes: structure of a gene, reading frame, regulatory sequences, promoters and enhancers

Module III

Gene expression:
Transcription- transcription products, types of RNA-mRNA, tRNA, rRNA and small nuclear RNA (snRNA), miRNA.
Eukaryotic transcription, post-transcriptional modification of mRNA.
Translation- translation of prokaryotic and eukaryotic mRNA, different stages of protein synthesis.
Genetic code: properties of genetic code, codon assignment, start codon and termination codons

Module IV

Module V

Eukaryotic chromosomes- molecular organization, nucleosomes, transposons, IS elements and other types of transposons.

Module VI

Cytoplasmic genome – mitochondrial DNA (mt DNA) and chloroplast DNA (cp DNA) -structure and important genes.

Practical

Experiments for Molecular biology
Instruments and equipments used in molecular biology and rDNA techniques.
Preparation of solutions and buffers for DNA isolation
Isolation of Genomic DNA from a suitable source- bacteria, plant or animal tissue
Examination of the purity of DNA by agarose gel electrophoresis.
Quantification of DNA by UV-spectrophotometer
Isolation and purification of plasmid DNA
Agarose gel analysis of plasmid DNA
Restriction digestion of plasmid DNA
Restriction analysis of λ phage DNA

Suggested Readings

5. Introduction to Genetic Engineering & Biotechnology- A. J. Nair; Jones & Bartlett Publishers, Boston, USA.

SEMESTER IV

Core Course

BV 1446 Recombinant DNA Technology

Credits-2 Contact hours 90 (Theory 54+ Practical 36)

Aim and objective: To impart a foundation on genetic engineering and its applications.

Outcome of the course: the students gains basic understanding on gene manipulation methods and principles.

Module I 10 hrs

Introduction to gene cloning and its applications: Tools of recombinant DNA technology-
Restriction endonucleases, classification and general characteristics of RE, other enzymes used in
the recombinant DNA technique- DNA ligase, alkaline phosphatase.

Module II 15 hrs

Vectors, the vehicle for cloning: special features needed for a vector,
Various types of cloning vectors:
plasmid cloning vectors- pBR322, Expression vectors- the pUC series.
Bacteriophage cloning vectors – λ phage cloning vectors, M13 phage based vector.
Combination vectors- Phagmid and Cosmid vectors.

Artificial Chromosomes:
Yeast artificial chromosome vectors (YACs), Bacterial artificial chromosome vectors (BACs),
Application for YAC and BAC in genome sequencing. Shuttle vectors for animals and plants,
mammalian vectors.

Gene Therapy- Vectors for gene therapy.
Module III

Module IV

Molecular hybridization techniques for genome analysis: RFLP, AFLP, RAPD, Southern hybridization
PCR: Principle, types and applications
Nucleic acid sequencing: Principle and applications, Genome sequencing methods, Human genome project– a brief account.
Gene expression analysis – Northern hybridization and microarrays.
Transgenic organisms and its impact in agriculture, Medicine and Environment.
Biosafety and Ethics in Genetic Engineering.

Practical

Experiments for Practical of rDNA Technology

Preparation of the reagents for rDNA experiments
Purification of Plasmid from bacterial Cultures.
Electrophoresis and evaluation of plasmid DNA-pUC 18 / pBR 322
Estimation of plasmid DNA by UV-VIS spectrophotometer
Restriction Digestion of pUC 18 and analysis by agarose gel electrophoresis
Transformation of E. coli with pUC 18 and selection of ampicillin resistant clones
Extraction and purification of Genomic DNA

Suggested Readings

1. Animal cell culture- John R W Master; Oxford University Press
5. Introduction to Biotechnology & Genetic Engineering, Jones & Bartlett Publishers, Boston.
6. Introduction to Genetic Engineering & Biotechnology- Nair, A. J., Jones & Bartlett Publishers, Boston,USA.
SEMESTER IV
Core Course
BV1447 Immunology

Credits-2 Contact hours 90 (T 54+ P 36)

Aim and Objective: To give a basic training to the students of Biotechnology on immune system, immunology and immunology related techniques.

Outcome of the Course: The student becomes capable of identifying the components of human immune system and its interactions.

Module I 8 hrs
The Human Immune System: Organs and cells of immune system

Module II 8 hrs
Historical perspective of immunology: Immune system and immunity, innate and specific or acquired immunity, Immune system- organs, tissues and cells involved in immunity, Humoral immunity and cell mediated immunity, antigens, antibodies, immunogens, haptens.

Module III 10 hrs
Immunoglobulins:
Antibody structure in relation to function and antigen binding: types of antibodies and their structures:
isotypes, allotypes and idiotypes.

Module IV 10 hrs
Measurement of antigen
Antibody-antigen interaction, antigen-antibody reactions, agglutination, immuno-diffusion, immuno-electrophoresis, ELISA, RIA, production of monoclonal (hybridoma technology) and polyclonal antibodies.

Module V 8 hrs
Immunoglobulin gene- Genetic basis of antibody diversity. T cell functions. Immunity to infections of diseases: vaccines - attenuated and recombinant vaccines, vaccination.

Module VI 4 hrs
Antibodies in targeting therapeutic agents- therapeutic antibodies
Introduction to tumor and transplantation immunology. Immunotherapy- targeted drug delivery
Module VII

Autoimmunity and autoimmune diseases: Hashimoto’s thyroiditis; Myasthenia gravis; Rheumatoid Arthritis, Pernicious anemia, Systemic lupus erythematosus (SLE).

Experiments for Immunology Practical 36 hrs

Immune cells –observation by staining and cell counting

6 hrs

Separation of immune cells from lymphoid organs of lab animals / blood.
Blood grouping –Determination of blood groups
Agglutination tests and immunological precipitation
Neutralization and complement fixation reaction
Demonstration of Radio immunoassay and ELISA
Demonstration of Immuno-electrophoresis

Suggested Readings

1. An Introduction to Immunology – C V Rao, Narosa Publishing House, New Delhi
2. Basics of Biotechnology- A J Nair; Laxmi Publications, New Delhi
3. Immunology – Joshi, Osama; AgroBotanica, New Delhi
SEMESTER IV

Core Course

BV1448 Biotechniques II

(Practical of BV1344, BV1345, BV1446, BV1447)

Credits: 2

Contact hours: 144 (Practical Hours of the above courses)

Practical

Experiments for Industrial Biotechnology Practical (BV1344) 36 hrs

1. Isolation of microorganism for the production of alpha amylase
2. Culturing of Aspergillus niger and students should familiarize the industrial products from this fungus
3. Isolation of yeast from natura sources- grapesw and other types of fruits
4. Isolation of lactic acid producing bacteria from curd and production of lactic acid
5. Preparation of media and sterilization for alcohol fermentation by yeast.
6. Preparation of Ethyl alcohol from glucose by Yeast fermentation- separation of ethanol by distillation (demonstration)
7. Growth Curve of bacteria or yeast cultures in nutrient broth
8. Isolation of microorganisms from spoiled food and identification
9. Isolation of organisms from curd / milk and fermentation of lactose
10. Demonstration of setting laboratory fermentor- basic features, purpose, procedure and application-Demonstration of running a laboratory fermentor.

Experiments for Molecular biology Practical (BV1345) 36 Hrs

1. Instruments and equipments used in molecular biology and rDNA techniques.
2. Isolation of Genomic DNA
3. Examination of the purity of DNA by agarose gel electrophoresis
4. Quantification of DNA by UV-spectrophotometer
5. Isolation and purification of plasmid DNA
6. Agarose gel analysis of plasmid DNA
7. Restriction digestion of plasmid DNA

Experiments for Practical of rDNA Technology (BV1446) 36 Hrs

1. Preparation of the reagents for rDNA experiments
2. Purification of Plasmid from bacterial Cultures.
3. Electrophoresis and evaluation of plasmid DNA-pUC 18 / pBR 322
4. Estimation of plasmid DNA by UV-VIS spectrophotometer
5. Restriction Digestion of pUC 18 and analysis by agarose gel electrophoresis
6. Transformation of E. coli with pUC 18 and selection of ampicillin resistant clones
7. Extraction and purification of Genomic DNA

Experiments for Immunology Practical BV1447) 36 hrs

1. Immune cells –observation by staining and cell counting
2. Separation of immune cells from lymphoid organs of lab animals / blood.
3. Blood grouping – Determination of blood groups
4. Agglutination tests and immunological precipitation
5. Neutralization and complement fixation reaction
6. Demonstration of Radio immunoassay and ELISA
7. Demonstration of Immuno-electrophoresis

Industrial Visit Report:
A detailed report of the industrial visit during semester 3 must be submitted by each student for evaluation on the day of practical examination Biotechniques II, in semester 4 that is added as a component in the valuation scheme.

SEMESTER V

Core Course

BV1544 Environmental Biotechnology

Credits: 3
Contact hours 54 (Theory 36 + Practical 18)

Aim and Objective: This core course is concerned with the application of biotechnology in keeping the environment clean and healthy. Various techniques are described and will be benefited by the students in their higher studies in biotechnology.

Course outcome: Student gains an understanding of the need of application of Biotechnology in environment for its protection and a sustainable future.

Module I

Introduction Ecosystem, Biodiversity, Types of ecosystem and biosphere.

Module II

5 hrs

Pollution: sources of pollution, general characteristics of domestic wastes, community wastes, agricultural wastes, effect of solid waste in the environment

Module III

6 hrs

Air pollution: aerosol, smog. Air quality standards.

Module IV

8 hrs

Bioremediation: Microbial degradation of pesticides, herbicides and other toxic chemicals in the environment, Biological control of pests and insects, Biopesticides- *Bacillus thuringiensis*, bioherbicides; Application of biotechnology in the production of biofertilizers and nitrogen fixation – nitrogen fixing microorganisms, mycorrhiza

Module V

4 hrs
Renewable and non-renewable energy resources.
Conventional fuels and their environmental impacts (fire wood, vegetable oils, animal fats, coal, petroleum)

Module VI

Non-conventional energy sources

Biomass: utilization of biomass as energy source—application of microbes in production of fuels from biomass—biogas and methanogenic bacteria, microbial hydrogen production, production of methanol, ethanol and other types of chemicals from biomass and agricultural wastes, the gasohol experiment.
Solar energy converter, artificial photosynthesis—artificial leaf.

Vegetable oils as engine fuels—biodiesel, energy crops—jojoba, jatropha
Possibility of plant-based petroleum industry and cellulose degradation for combustible fuels.

Module VII

Bioleaching
Enrichment of ores by microorganisms—bioaccumulation and biomineralisation.

Practical

Experiments for Environmental Biotechnology
1. Microbiological assessment of drinking water—water from well, river, pipeline and packaged drinking water
2. Isolation of microbes from the environment—from air, soil, floor of the lab and water.
3. Assessment of organic load in aquatic systems and factory effluent—Determination of BOD and COD.
4. Biogas production by methanogenic bacteria or by mixed culture.
5. Isolation of nitrogen fixing bacteria from leguminous plants
6. Determination of N, P and K in biofertilizers

Suggested readings

2. Biological Conservation—Spellerberg I F
3. Biological waste water treatment 2nd Edition—Grady C P L
4. Biotechnology—B D Singh; Kalyani Publishers, New Delhi
5. Biotechnology fundamentals and applications—Purohit & Mathur; Agrobotanica, India
7. Environmental Biotechnology—Alan Scragg; Longman, England
8. Environmental issues and Options—Mishra C.
SEMESTER V

Core Course

BV 1545 Plant Biotechnology & Animal Biotechnology

Credits 4 Contact hours 90 (Theory 72+Practical 18)

Aim: This course is designed to impart basic knowledge in the applied aspects of plant biotechnology and animal biotechnology for the improvement of agriculture and related industries. It gives an introduction about the various techniques of animal cell culture, cloning and tissue culture of plants and animals.

Course Outcome: Students gain the basic knowledge of techniques of plant and animal cell culture and maintenance.

Plant Biotechnology

Module I 10 hrs

Fundamental principles of in vitro plant cultures: use of plant growth regulators, composition of tissue culture media- media components and its functions.
Sterilization Methods - Steam sterilization, Dry sterilization, Filter sterilization, surface sterilization of explants.
Types of in vitro cultures: callus cultures, cell suspension cultures, organ cultures- root cultures, hairy root cultures, embryo cultures, anther culture.

Module II 10 hrs

Application of in vitro cultures: embryogenesis and organogenesis- a brief understanding, clonal multiplication and micropropagation- meristem culture, axillary bud and shoot tip culture, anther and pollen culture- production of haploids and its uses.
Plant secondary metabolites production through cell, tissue and organs cultures.
Advantages and disadvantages of in vitro culture methods

Module III 10 hrs

Somaclonal variation
Possible reasons of Somaclonal variations, applications, merits and demerits of Somaclonal variations.
Protoplast culture
Protoplast- isolation and culturing of protoplast- principle and application, regeneration of protoplasts, protoplast fusion and somatic hybridization- selection of hybrid cells.

Module VI 12 hrs

Genetic engineering of plants: Methods of gene transfer in plants –Physical, chemical and biological methods Agrobacterium tumefaciens, tumor formation in plants by A. tumefaciens, application of A. tumefaciens in plant genetic engineering, Virus mediated gene transfer in plants.

Transgenic plants
Transgenic crops, Impact of transgenic plants in agriculture and Horticulture, Non Agricultural applications of transgenic plants- Biopharming- production of therapeutic proteins in transgenic plants, edible vaccines, disease resistant, salt tolerant, pest resistant and stress tolerant crop and medicinal plants; Metabolic engineering of plants for enhanced and controlled production of plant products.

Animal Biotechnology

Module I

Animal cell culture: History, animal cell, tissue and organ culture.
Animal cell culture techniques, Primary cell cultures and secondary cell cultures, immortalized cell cultures, cell lines-types and characterisation, Media – media components and physical parameters, Instruments and equipments needed for animal cell cultures, uses of animal cell cultures.

Module II

Application of Animal Cell Cultures: Products of animal cell cultures- hormones (insulin, growth hormones), interferon, t-plasminogen activator, factorVIII, Factor IX and as hosts for virus cultivation.
Expression of cloned proteins in animal cells, production of vaccines in animal cells, production of monoclonal (hybridoma technology) and polyclonal antibodies.
Scale up of animal cell cultures: Special bioreactors for large-scale cultivation of animal cells, anchorage depended cells and suspension cultures, Roller bottles and spinner flasks.

Module III

Stem cell technology: Stem cell culture and its clinical uses, types of stem cells.
Gene therapy and tissue grafting, Growth factors promoting proliferation of animal cell cultures.
Preservation and maintenance of animal cell cultures- cryopreservation and transport of animal cell cultures. Transgenic animals and its practical uses.
Bioethics in animal cell culture, stem cell technology and transgenic animals.

Practical

Experiments for Practicals in Plant Biotechnology

1. Preparation of plant tissue culture medium, and sterilization, Preparation of stock solutions of nutrients for MS Media.
2. Preparation of M S Media
3. Surface sterilization of plant materials for inoculation (implantation in the medium)
4. Development of callus cultures and its sub-culturing
5. Organogenesis- shoot regeneration, root regeneration, somatic embryogenesis
6. Micropropagation of potato/tomato/ - Demonstration
7. Familiarization of instruments and special equipments used in the plant tissue culture experiments- Laminar Airflow chamber,
8. Protoplast isolation and culturing – Demonstration

Experiments for Practicals in Animal Biotechnology

1. Familiarization of methods, equipments and techniques of animal cell culture
2. Isolation of lymphocytes from blood
3. Cell viability assay by die exclusion method and cell counting
4. MTT assay of cells Evans blue assay of pollen grains or blood cells
5. Demonstration of ELISA technique
6. Protein purification by ion exchange chromatography from serum
Suggested readings

2. Animal cell culture- John R W Master; Oxford University Press
4. Biotechnology-Fundamentals and Application- S S Purohit and S K Mathur; Agrobotanica, India.
Role of Biotechnology in Medicinal and aromatic plants- Irfan A Khan and Atiya Khanum; Ukaaz Publications, Hyderabad.

SEMESTER VI

Core Course

BV1651 Biotechniques III
(Practical of BV1544 and BV1545)

Credit: 2 Contact hours: 126 (90+ 36 practical hrs of the above courses)

Experiments for Practical in Plant Biotechnology (BV1545) 40 hrs

1. Preparation of plant tissue culture medium and sterilization, Preparation of stock solutions of nutrients for MS Media.
2. Preparation of M S Media
3. Surface sterilization of plant materials for inoculation (implantation in the medium)
4. Development of callus cultures and its sub-culturing
5. Organogenesis- shoot regeneration, root regeneration, somatic embryogenesis
6. Micropropagation of potato/tomato/ - Demonstration
7. Familiarization of instruments and special equipments used in the plant tissue culture experiments- Laminar Airflow chamber,
8. Protoplast isolation and culturing – Demonstration

Experiments for Practical in Animal Biotechnology 30hrs

1. Familiarization of methods, equipments and techniques of animal cell culture.
2. Isolation of lymphocytes from blood
3. Cell viability assay by die exclusion method and cell counting.
4. MTT assay of cells Evans blue assay of pollen grains or blood cells.
5. Demonstration of ELISA technique.
6. Protein purification by ion exchange chromatography from serum

Experiments for Environmental Biotechnology (BV1544)

<table>
<thead>
<tr>
<th>Hour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Microbiological assessment of drinking water- water from well, river, water supply department and packaged drinking water</td>
</tr>
<tr>
<td>2</td>
<td>Isolation of microbes from the environment- from air, soil, floor of the lab, from water.</td>
</tr>
<tr>
<td>3</td>
<td>Assessment of organic load in aquatic systems and factory effluent- Determination of BOD and COD.</td>
</tr>
<tr>
<td>4</td>
<td>Biogas production by methanogenic bacteria or by mixed culture.</td>
</tr>
<tr>
<td>5</td>
<td>Isolation of nitrogen fixing bacteria from leguminous plants</td>
</tr>
<tr>
<td>6</td>
<td>Determination of N, P and K in biofertilizers</td>
</tr>
</tbody>
</table>

Open Courses and Elective Courses

CHOICE OF OPEN COURSE

The students have the freedom to opt any one of the open courses during the fifth semester from other departments.

Open Course of Biotechnology shall be offered only to students from other B. Sc. Programmes (Non- Biotechnology students). One course shall be offered from the following choices:

- BV 1551. Bioinformatics
- BV1552 Food & Dairy Biotechnology
- BV 1553 Genetic Engineering
- BV 1554 Basics of Environmental Biotechnology

Elective Courses of Biotechnology

(Elective course of biotechnology shall be offered to B.Sc. Biotechnology students during the sixth semester. One course to be selected from the following choices)

- BV1661 – Bioinformatics & Nanobiotechnology
- BV1662- Food & Dairy Biotechnology
- BV 1663- Genetic Engineering
SEMESTER V

Open course for students of other Departments

BV1551 Bioinformatics

Credits: 2
Contact hours: 54

Aim and Objective: To introduce the subject of bioinformatics to the students of non-biology. Students should be familiarized to the importance of the bioinformatics, databases, genomics and proteomics, tools and software of bioinformatics at the elementary levels.

Course outcome: The students get a broad understanding of applications of IT in Biological data analysis

Module I
18 hrs

Module II
18 hrs
Internet resources for Biotechnology, a short introduction to genome analysis, genome sequencing projects, genome similarity, Tools (software) in Bioinformatics. Tools for sequence alignments-BLAST and Fasta.

Module III
18 hrs
Genomics and Proteomics-Definitions, Application of Proteomics and genomics in Biotechnology.

Practicals in Bioinformatics

1. Use of Computers in Biological science- Data base creation, Data base retrieval – Online use of Computational tools.
2. Identification of a given sequence as DNA, RNA or Proteins
3. To analyze the sequence of a given DNA and find out sequence composition
4. To find out the number of times a sequence is repeated in a given DNA sequence.
5. To find out the complementary sequence of a given nucleotide sequence

Suggested Readings

2. Introduction to Bioinformatics – V. Kothekar, Druv Publication
Open / Elective course

BV1552/ BV1649 Food & Diary Biotechnology

Credit 2

Contact hours: 54 (Open course) / 36 (Elective)

Aim and Objective: To introduce the importance of biotechnology in food and diary industries to the students of non-biology.

Course outcome: The students get a broad understanding of food production, preservation and Spoilage.

Module I

15 hrs

Microbes of food and fermented food- Curd, wheat and rice flour, Meat and fish, Poultry and eggs, Breads and bakery products, Grains
Microbiological contamination of foods- indicator organisms, culture techniques, direct methods, immunological methods etc.

Module II

Food spoilage

15 hrs

Module III

Food Preservation- methods of food preservation, Physical & Chemical Methods, Osmotic pressure – preserving foods in sugar and salt, chemical preservatives, Radiation as a preservation methods

Module IV

12 hrs

Microbes of Dairy industry- Dairy products Microbes in fermented food production Industrial production of antibiotics (penicillin & streptomycin) and organic acids (acetic acid & Citric acids) Microorganisms as food – fermented food, microalgae- Single cell protein, Edible mushrooms.

Suggested Readings

1. Food Microbiology- MR Adams and Moss
2. Food Processing- Biotechnological applications Marwah &Arora
3. Food Microbiology-William C Frazer
4. Industrial microbiology -LE Casida

Open course for students from other Departments/ Elective Course for Biotechnology students

BV 1553 / BV 1650 Genetic Engineering

Credit 2

Contact hours: 54 (open Course) / 36 (Elective Course)

Aim and Objective: To introduce the principles of gene manipulation to the students of non-biology.

Course outcome: The students get a broad understanding of tools, methods and applications of genetic engineering.

Module I

15 hrs
Introduction to gene cloning and its applications, Tools of recombinant DNA technology-
Restriction endonucleases, classification and general characteristics of endonucleases; Other
enzymes used in the recombinant DNA technique- DNA ligase, alkaline phosphatase;

Module II 15 hrs

Vectors, the vehicle for cloning: special features needed for a vector, Various types of cloning
vectors-plasmid cloning vectors- pBR322, Expression vectors, the pUC series, Bacteriophage
cloning vectors - phage λ cloning vectors, M13 based vectors, Phagemids and Cosmid vectors,

Module III 12 hrs

Construction of recombinant DNA, host cells, competent cells, bacterial transformation,
screening methods of transformed cells, DNA libraries: genomic libraries and cDNA libraries.
Application of genomic libraries and cDNA libraries. Various methods of genetic transformation in
eukaryotes- Direct gene transfer and vector mediated gene transfer. Screening methods of
transformed cells and organisms.

Module IV 12 hrs

Molecular hybridization techniques for genome analysis Genome analysis: RFLP, AFLP,
RAPD, Southern hybridization PCR: Principle and applications Nucleic acid sequencing: Principle
and applications, Genome sequencing methods, Human genome project– a brief account.

Suggested Reading

1. Animal cell culture- John R W Master; Oxford University Press
4. Culture of animal cells – A manual of basic technique, R Ian Freshney; Wiley- Liss
 Publication, New York.
5. Introduction to Biotechnology & Genetic Engineering, Jones & Bartlett Publishers, Boston.
6. Introduction to Genetic Engineering & Biotechnology- Nair, A. J., Jones & Bartlett
 Publishers, Boston, USA.
 Delhi.

Open course for students from other Departments

BV 1554. Basics of Environmental Biotechnology

Credits: 2

Contact hours 54

Aim and Objective: This course is aimed to bring an enthusiasm on environmental protection and
it should give the contribution of biotechnology techniques to keep the environment clean and
healthy. As well it should highlight the economic aspects in the application of biotechnology in
protecting the environment from pollution.

Course Outcome: The students understand the importance of environmental protection and the role
of biotechnology in it.

Module I 15 hrs
Introduction

Environment

Basic concepts- Atmosphere, hydrosphere, lithosphere, biosphere
Scope and Importance of Environmental Biotechnology; Pollution- sources of pollution, general characteristics; Environmental legislation-water Act; Forest Act; Environmental Protection act.

Module II

15 hrs

Water pollution: Organic load in aquatic systems - BOD and COD, microbial quality of water, Laboratory methods for the detection of coliforms in drinks and food; fecal and non-fecal bacteria; Treatment of municipal wastes and hazardous industrial effluents.

Module III

12 hrs

Non-conventional energy sources: Biomass: utilization of biomass as energy source– application of microbes in production of fuels from biomass- biogas and methanogenic bacteria, Steps and process of Biogas production; vegetable oils as engine fuels, energy crops-jojoba; Bioplastics

Module IV

12 hrs

Bioremediation: herbicides and other toxic chemicals in the environment; Biodegradation, phyto remediation, superbug; Biopesticides- Bacillus thuringiensis, bioherbicides; Solid waste treatment-Composting, vermicomposting; Disposal of sludge- Land filling, lagooning

Suggested readings

2. Biodiversity- Status and Prospects- Pramod tandon etal Narosa Publishing House, New Delhi
3. Biological Conservation – Spellergerg I F
4. Biological waste water treatment 2nd Edition- Grady C P L
5. Biotechnology – B D Singh; Kalyani Publishers, New Delhi
6. Biotechnology fundamentals and applications – Purohit & Mathur; Agrobotanica, India
9. Environmental Biotechnology - Alan Scragg; Longman, England
10. Environmental issues and Options – Mishra C.

Elective course for Biotechnology students

BV 1648 Bioinformatics and Nanobiotechnology

Credit 2

Contact hours: 36

Aim and Objective: This course is for biotechnology students, who are interested to know about the methods and application of bioinformatics and modern Nanobiomolecules and their contribution in the various fields of biotechnology and healthcare.

Course Outcome: Students get familiarised to databases, application softwares, and tools of bioinformatics, and to the ease of storing and interpretation of biological data.

Module I

8 hrs

Module II 6 hrs
Sequence alignment- Pair wise sequence alignment-sequence homology vs similarity; similarity and identity. Database similarity searching- BLAST, FASTA format; Multiple sequence alignment, scoring function, CLUSTAL W

Module III 6hrs
Phylogenetic tree construction- distance based methods and character based methods, PHYLIP

Module IV 6hrs
Proteomics – technology of protein expression analysis, 2D PAGE, MS, Protein identification through database search, protein data bank Functional Genomics- Sequence based approaches, Microarray based approaches Applications of proteomics and genomics

Module V 10h

10 hrs
Nanobiotechnology - Introduction to nanoworld, classification of nano materials, application of nano crystals, DNA chip, nano biosensors –DNA sensors; Quantum dots; Drug delivery systems and techniques-prosthesis and implants-diagnosis and screening; Applications of Nanobiotechnology in medicine and health.
Suggested Readings

4. Introduction to Bioinformatics – V. Kothekar, Druv Publication
5. Introduction to Genetic Engineering & Biotechnology- A. J. Nair; Jones & Bartlett Publishers, Boston, USA.

BV1661 Project Work / Dissertation

An independent project or dissertation work related to Biotechnology has to be carried out by each student during the VI semester under a faculty member of the college, with in the college or an external Institute/ Department / University duly certified by the Head of the Department and supervising teacher. The thesis in the prescribed format should be submitted for evaluation at the viva voce examination in VI semester.

Elective Courses of Botany

SEMESTER VI

Elective Course of Core subject

BV16421.1 Horticulture

Credits: 2 Contact Hours: 54

Module I

10 hrs

Module II

12 hrs

Propagation methods- Cuttings, Layering – Air layering, Ground layering (Tip, Trench and Compound) Budding – T- budding, Grafting – Approach grafting, Bridge grafting, whip and tongue grafting. , Garden tools and implements

Manures and fertilizers- Farmyard manure, compost, vermicompost and biofertilizers. Chemical fertilizers – NPK. Time and application of manures and fertilizers. Foliar sprays

Module III

12 hrs

Components of Garden- Lawns and landscaping, Trees, shrubs and shrubberies, climbers and creepers, Flower beds and borders, ornamental hedges, edges, Drives, roads, walks and paths, Carpet beds, topiary, trophy, rockery, Conservatory or green houses Indoor garden, Roof garden, Bonsai
Module IV
8 hrs
Flower Arrangement- Containers and requirements for flower arrangements, Free style, Shallow and Mass arrangement, Japanese – Ikebana, Bouquet and garland making, Dry flower arrangement
Harvesting- Methods, Storage, Marketing of Fruits, vegetables and flowers, Preservation and processing of fruits and vegetables

Module V
12 hrs
Growth regulators in horticulture- Rooting hormones, Growth promoters, Flower induction, Parthenocarpy
Plant protection- Common diseases of fruits and vegetable crops, Weedicides, Fungicides, Pesticides
Field Study: Visit to a Botanical garden under the guidance of the teacher is encouraged.

Suggested Readings
Arora J.S 1990, Introductory Ornamental Horticulture, Kalyani Publications
Bose T.K and Mukerjee D 1987, Gardening in India, Oxford Book House
Chauhan V.S, Vegetable Production in India, RamPrasad & Sons
Shujnimoto, 1982, The Essentials of Bonsai, David & Charles, Newton

SEMESTER VI
Elective Course
BV1643.1 Mushroom Cultivation and Marketing
Credits: 2
Contact hours: 54

Module I
12 hrs
History and introduction: Edible mushrooms and Poisonous mushrooms. Systematic position, morphology, distribution, structure and life cycle of Agaricus and Pleurotus. Nutritional value, medicinal value and advantages-types- milky, straw, button and poisonous mushrooms

Module II
8 hrs
Nutritional value, medicinal value and advantages- types- milky, straw, button and poisonous mushrooms

Module III
12 hrs

Module IV
12 hrs
Diseases- Common pests, disease prevention and control measures.
Processing - Blanching, steeping, sun drying, canning, pickling, freeze drying.

Storage – short term and long term storage.

Module V
10 hrs

Common Indian mushrooms. Production level, economic return, Foreign exchange from Mushroom cultivating countries and international trade.

Field Study: Visit to a mushroom cultivating Laboratory

Suggested readings

3. Indian Journal of Mushrooms. Published by I.M.G.A. Mushroom Research Laboratory. College of agriculture, Solan
N.Delhi

SEMESTER VI

Elective Course

BV1644.1 Forestry

Credits: 2
Contact hours: 54

Module I
10 hrs

General introduction to forests- Natural and Man made; Tropical, temperate, evergreen semievergreen, deciduous; Monoculture, multipurpose, social and industrial, Forest and gene conservation.

Module II
12 hrs

Silviculture- concept and scope of study of natural and artificial regeneration of forests. Clear felling, uniform shelter, wood selection, coppice and conservation systems. Silviculture of some of the economically important species in India such as Azadirachtaindica, Tectona grandis, Eucalyptus, Mahagoni Dalber gia siso and Santal um album, jack wood, Rubber.

Wood: Homogenous and heterogenous- spring and autumn wood- Porous and non porous wood- Heart and sap wood.

Relevance of wood anatomical studies in Kerala- Identification of wood- preparation of key and their uses

Module III
10 hrs

Social and agro forestry. Selection of species and role of multipurpose trees. Food, fodder and energy.

Social forest- Avenue plantation. Sacred plants- definition, importance of sacred trees like Ficus religiosa, Emblica officinalis, Aegle marmelous.
Module IV
10 hrs
Seed orchards, seed dormancy- Types of dormancy, physical and chemical methods to overcome seed dormancy. Forest laws- necessity, General principles, Indian forest act 1927 and their amendment.

Module V
12 hrs
Forest resources and utilization. Forest products- timber, pulp wood, secondary timbers, non timber forest products (NTFPs).

Definition and scope (brief outline) of the following Gums, resins, fibers, oil seeds, nuts, rubber, canes and bamboos, medicinal plants, charcoal. Lac collection and marketing.

Field Study
Identification of wood using key: Teak, Jack wood, Mahogany, Rubber, Azadirachta, Eucalyptus. Visit to a plywood factory to have knowledge of wood based industry.

Suggested readings

7. Chauhan V.S, Vegetable Production in India, RamPrasad & Sons
Elective Courses in Zoology

SEMESTER VI

Elective Course I

BV1661.1 Economic Zoology - Vermiculture and Apiculture

Credits: 2 Contact hours: 54

Module I 6 hrs

Module II 10 hrs
Methodology of vermicomposting: step by step methodology – containers for culturing, raw materials required, preparation of bed, environmental pre-requisites, feeding, harvesting, and storage of vermicompost. Advantages of composting, precautions to be taken to prevent attack by pests and pathogens.

Module III 8hrs
Vermicompost profile and applied aspects: physical, chemical and biological parameters of vermicast, vermin enrichment, economic uses of vermiculture (biofertilizer, waste disposal, vermiwash, poultry feed, vermi-remediation etc).

Module IV 8hrs
Introduction and Scope: Definition and significance of the study. Caste system and Social behavior; common species of honeybees used, organization of bee colony, social life and adaptations of honeybees.

Module V 12hrs
Bee keeping methods and equipments: indigenous methods, extraction appliances, extraction of honey from the comb and processing, management and maintenance of an apiary, bee pastures.

Module VI 10hrs
Diseases and economics: diseases (bacterial, fungal, protozoan, acarine, brood diseases), preventive and curative measures. Use of honey, bees wax, bee venom, nutrient profile of honey, marketing strategies.

Suggested readings:
4. Mishra R.C. Perspectives in Indian Apiculture
5. Sathe, T.V. Vermiculture and Organic farming.

SEMESTER VI

Elective Course II

BV1661.2 Ornamental Fresh water fish production

Credits: 2
hours: 54

Module 1
7hrs
Importance and history of aquarium fish keeping. Design and construction of aquaria: aquarium fabrication- shape, size, volume, type of glass tank, cutting of glass, preparation of glass tank, strengthening and supporting of tank, fitting of tanks into room settings; aquarium floor setting – type and size of pebbles, gravels, granites used for bed setting and its advantages. Filters- biological, chemical and mechanical. Aquarium accessories like aerators, decorative, lighting, heating and feeding trays.

Module II
4 hrs

Module III
3 hrs
Aquarium plants: Uses of aquarium plants, different varieties of plants like submerged plants (tubers, rooted plants, cutting plants) and emerged plants.

Module IV
12hrs

Module V
8hrs

Module VI

8hrs

Module VII

12hrs

References

14. Industrial Fisheries, Cochin University of Science and Technology, Cochin-16.

SEMESTER VI
Elective Course III
BV1661.3 Human Nutrition

Credits: 2 contact hours: 54

Module I 20 hrs

Module II 15 hrs

Module III 5 hrs
Calorific values of food – Basal metabolic rate, energy requirements of man, women, infants and children.

Module IV 15 hrs
Nutritional value of foods- cereals, fruits, milk, egg, meat, fish. Balanced diet, Nutrition in pregnancy - Physiological stages of pregnancy, nutritional requirements, food selection, complication of pregnancy. Nutrition during lactation - Physiology of lactation, nutritional

Module V

5 hrs

Interrelationship between nutrition & health : - Visible symptoms of goods health; Use of food in body - Digestion, Absorption, transport & utilization; Role of fibres in human nutrition; Effect of cooking & heat processing on the nutritive value of foods; Processed supplementary foods; Food sanitation in hygiene.

Suggested readings