Time: 3 hours

Max. Marks: 75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. If $\{f_n\} \subset H(G)$ converges to f in H(G) and each f_n nevervanishes on G then prove that either $f \equiv 0$ or f never vanishes.
- 2. State Riemann mapping theorem. Find the equivalent classes among the simply connected regions.
- 3. Show that $\prod_{n=2}^{\infty} (1 \frac{1}{n^2}) = \frac{1}{2}$
- 4. If Re z > 1, show that $\zeta(z)\Gamma(z) = \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-nt} t^{z-1} dt$
- 5. If z is not an integer, prove that $\Gamma(z)\Gamma(1-z) = \pi \ cosec \ \pi z$
- 6. Define: (i) function element and (ii) analytic continuation along a path.
- 7. Prove that every harmonic function is infinitely differentiable.
- 8. Define the order of an analytic function. Also find the order of the analytic function $f(z) = exp(z^4)$. $5 \times 3 = 15$

Part B Anwer all questions from 9 to 13 Each question carries 12 marks

- 9. A. a. If G is open in \mathbb{C} then prove that there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n$, $K_n \subset int K_{n+1}$ and every compact subset of G is a subset of K_n for some n.
 - b. If a set $\mathscr{F} \subset C(G, \Omega)$ is normal then prove that:
 - i. for each z in G, $\{f(z) : f \in \mathscr{F}\}$ has a compact closure in Ω
 - ii. \mathscr{F} is equi continuous at each point of G

OR

- B. a. Prove that a family \mathscr{F} in H(G) is normal if and only if \mathscr{F} is locally bounded
 - b. Find an analytic function f which maps $\{z : |z| < 1, Re \ z > 0\}$ on to B(0, 1) which is one-one.
- 10. A. a. If $Re z_n > 0$ then prove that Πz_n converges absolutely if and only if the series $\sum (z_n 1)$ converges absolutely.

b. Show that $\sin \pi z = \pi z \ \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$

OR

- B. a. If $G = \{z : Re \ z > 0\}$ and $f_n(z) = \int_{\frac{1}{n}}^n e^{-t} t^{z-1} dt$ for $n \ge 1$ and z in G, then prove that each f_n is analytic on G and the sequence is convergent in H(G).
 - b. If $Re \ z > 0$ then prove that, $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$
- 11. A. a. If $Re \ z > 1$, then prove that $\zeta(z)\Gamma(z) = \int_0^\infty (e^t 1)^{-1} t^{z-1} dt$ b. If $a \in \mathbb{C} - K$, then prove that $(z - a)^{-1} \in B(E)$, where E is a subset of $\mathbb{C}_\infty - K$

OR

- B. Prove the following are equivalent:
 - i. G is simply connected
 - ii. Every function f in H(G) has a primitive
 - iii. ${\cal G}$ is homeomorphic to the unit disk
- 12. A. a. Let G be a region such that $G = G^*$. If $f : G_+ \cup G_0 \to \mathbb{C}$ is a continuous function which is a nalytic in G_+ and if f(x) is real for x in G_0 , then show that there is an analytic function $g : G \to \mathbb{C}$ such that g(z) = f(z) for all z in $G_+ \cup G_0$
 - b. If $\gamma : [0,1] \to \mathbb{C}$ is a path from a to b and $\{(f_t, D_t) : 0 \le t \le 1\}$, $\{(g_t, B_t) : 0 \le t \le 1\}$ are analytic continuations along γ such that $[f_0]_a = [g_0]_a$ then prove that $[f_1]_b = [g_1]_b$

OR

- B. a. If $\gamma : [0,1] \to \mathbb{C}$ is a path and $\{(f_t, D_t) : 0 \le t \le 1\}$ be an analytic continuation along γ and R(t) is the radius of convergence of the power series expansion of f_t about $z = \gamma(t)$ then show that either $R(t) \equiv \infty$ or $R : [0,1] \to (0,\infty)$ is continuous.
 - b. If (f, D) is a function element which admits unrestricted continuation in the simply connected region G, show that there is an analytic function $F : G \to \mathbb{C}$ such that F(z) = f(z) for all z in D.
- 13. A. a. Let G be a region and suppose that u is a continuous real valued function on G with the Mean Value Property. If there is a point a in G such that $u(a) \ge u(z)$ for all z in G then prove that u is a constant function.
 - b. If $D = \{z : |z| < 1\}$ and $f : \partial D \to \mathbb{R}$ is a continuous function then prove that there is a continuous function $u : \overline{D} \to \mathbb{R}$ such that u(z) = f(z) for all z in ∂D and u is harmonic in D

OR

- B. a. If f is an entire function of genus μ then prove that for each positive number α there is a number r_0 such that $|f(z)| < exp(\alpha |z|^{\mu+1})$ for all $|z| > r_0$.
 - b. If f is an entire function of finite order λ , where λ is not an integer then prove that f has infinitely many zeros.

 $5 \times 12 = 60$