Reg.No. :

\qquad
Name: \qquad

Seventh Semester B.Tech Degree Examination, November 2016 (2013 Scheme)

13.705.8 ADVANCED COMPUTATIONAL METHODS (C) (Elective II)

Time : 3 Hours

Max Marks :100

Instructions: Answer all questions in Part A and any one question from each module in Part B
PART-A

1. Discuss different types of errors associated with numerical methods
2. What do you mean by multiple regression analysis?
3. Explain Hermite's interpolation
4. Write short note on Milne's predictor-corrector method.
5. What are partial differential equations? How are they classified?

PART-B

Module I

6. Solve by Gauss Elimination method:

$$
\begin{aligned}
& x_{1}+2 x_{2}+5 x_{3}+x_{4}=-8 \\
& -x_{1}+7 x_{2}+2 x_{3}+4 x_{4}=15 \\
& x_{1}+x_{4}=3 \\
& 4 x_{1}+x_{2}-x_{3}+x_{4}=11
\end{aligned}
$$

OR

7. Find the largest eigen value and eigen vector for the given matrix. Adopt
'Power Method'

$$
\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

Module II

8. A simply supported beam carries concentrated load P at its midpoint. Corresponding to various values of P the maximum deflection Y is measured and the data are given below:
P: 100 $120 \begin{array}{lllll}140 & 160 & 180 & 200\end{array}$
Y:0.45 $0.0 .550 .60 \quad 0.70$
Find the equation of the form $\mathrm{Y}=\mathrm{a}+\mathrm{bP}$
20 Marks

OR

9. Obtain the cubic spline approximation of the given data, hence determine $y(0.5)$ and $y^{\prime}(2)$

$\mathrm{X}:$	0	1	2	3
$\mathrm{Y}:$	-5	-4	3	6

20 Marks
Module III
10. Find $y(0.1), y(0.2)$ given $d y / d x=x-2 y, y(0)=1$ taking $h=0.1$ using $4^{\text {th }}$ order Runge-Kutta method.

20 Marks

OR

11. Solve the boundary value problem:

$$
x \frac{d^{2} y}{d x^{2}}+y=0, y(1)=1, y(2)=2, \quad \text { Take } h=1 / 4 .
$$

20 Marks

Module IV

12. Solve the equation $\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0$ for the square mesh with boundary value as shown in figure.

20 Marks

OR

13. Find the values of $u(x, t)$ satisfying the parabolic equation $u_{t}=4 u_{x x}$ under the conditions $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(8, \mathrm{t})=0$ and $\mathrm{u}(\mathrm{x}, 0)=4 \mathrm{x}-\mathrm{x}^{2} / 2$ at the points $\mathrm{x}=\mathrm{i}: \mathrm{i}=0,1,2, \ldots .7$ and $\mathrm{t}=\mathrm{j} / 8: \mathrm{j}=0,1,2, \ldots .5$.
