(**Pages: 2**)

Reg.No. :

Name:

Seventh Semester B.Tech Degree Examination, November 2016 (2013 Scheme)

13.705.8 ADVANCED COMPUTATIONAL METHODS (C) (Elective II)

Time : 3 Hours

Instructions: Answer all questions in Part A and any one question from each module in Part B

PART-A

- 1. Discuss different types of errors associated with numerical methods
- 2. What do you mean by multiple regression analysis?
- 3. Explain Hermite's interpolation
- 4. Write short note on Milne's predictor-corrector method.
- 5. What are partial differential equations? How are they classified? 5x4 = 20 Marks

PART-B

Module I

6. Solve by Gauss Elimination method:

$$x_{1}+2x_{2}+5x_{3}+x_{4} = -8$$

-x_{1}+7x_{2}+2x_{3}+4x_{4} =15
$$x_{1}+x_{4} = 3$$

$$4x_{1}+x_{2}-x_{3}+x_{4} = 11$$

20 Marks

- OR
- 7. Find the largest eigen value and eigen vector for the given matrix. Adopt 'Power Method'

$\int 2$	1	1	0]
1	1	0	1
1	0	1	1
$\lfloor 0$	1	1	2)

Module II

A simply supported beam carries concentrated load P at its midpoint. 8. Corresponding to various values of P the maximum deflection Y is measured and the data are given below:

P:100	120 140	160	180	200
Y:0.45	0.55 0.60	0.70	0.80	0.85
Find the	equation of	the forn	n Y= a	+ bP

Max Marks :100

20 Marks

OR

- 9. Obtain the cubic spline approximation of the given data, hence determine y(0.5) and y'(2)
 X: 0 1 2 3
 - Y: -5 -4 3 6

Module III

10. Find y(0.1), y(0.2) given dy/dx = x - 2y, y(0)=1 taking h=0.1 using 4th order Runge-Kutta method.

20 Marks

20 Marks

OR

11. Solve the boundary value problem:

$$x\frac{d^2y}{dx^2} + y = 0$$
, $y(1) = 1$, $y(2) = 2$, Take $h = 1/4$. 20 Marks

Module IV

12. Solve the equation $u_{xx} + u_{yy} = 0$ for the square mesh with boundary value as shown in figure.

13. Find the values of u(x,t) satisfying the parabolic equation u_t = 4u_{xx} under the conditions u(0,t) = u(8,t)=0 and u(x,0) = 4x - x²/2 at the points x=i: i = 0,1,2,....7 and t= j/8: j= 0, 1, 2,....5.
20 Marks