SCHEME -2018

IV SEMESTER

ELECTRONICS and COMMUNICATION ENGINEERING (T)

<table>
<thead>
<tr>
<th>Course No</th>
<th>Name of subject</th>
<th>Credits</th>
<th>Weekly load, Hours</th>
<th>CA Marks</th>
<th>Exam Duration Hrs</th>
<th>U E Max Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.401</td>
<td>Engineering Mathematics III - Probability & Random Processes (T)</td>
<td>4</td>
<td>3 1</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.402</td>
<td>Humanities (T)</td>
<td>3</td>
<td>3 -</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.403</td>
<td>Computer Organisation & Architecture (T)</td>
<td>3</td>
<td>3 1</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.404</td>
<td>Digital Signal Processing (T)</td>
<td>4</td>
<td>3 1</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.405</td>
<td>Analog Communication (T)</td>
<td>3</td>
<td>3 1</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.406</td>
<td>Analog Integrated Circuits (T)</td>
<td>3</td>
<td>3 1</td>
<td>50</td>
<td>3</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.407</td>
<td>Logic Circuit Design Lab (T)</td>
<td>2</td>
<td>- -</td>
<td>3</td>
<td>5</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>18.408</td>
<td>Analog Integrated Circuits Lab (T)</td>
<td>2</td>
<td>- -</td>
<td>3</td>
<td>5</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>18 5 6</td>
<td>400</td>
<td>800</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>
18.401 ENGINEERING MATHEMATICS -III (T)
(PROBABILITY & RANDOM PROCESSES)

Teaching Scheme: 3(L) - 1(T) - 0(P)
Credits: 4

Course Objective:

- To provide a basic understanding of random variables and probability distributions.
- To give a basic idea about Random process - its classification, types and properties and their applications in engineering fields.

Module – I

Random Variables -Discrete and continuous random variables -Probability distributions.- Mathematical Expectations and properties -Special probability distributions-Binomial distribution, Poisson distribution, Poisson approximation to Binomial, Uniform distribution, Exponential Distribution, Normal distribution- mean and variance of the above distributions- Distribution fitting (Binomial and Poisson)

Module – II

Multiple random variables -Joint and marginal distributions-Expectation involving two or more random variables- independence, correlation and covariance of pairs of random variables, central limit theorem (no proof).Random processes-Types of random processes- Ensemble mean-Wide sense stationary (WSS) process. - Autocorrelation, autocovariance and their properties.

Module – III

Module – IV

Poisson process-mean and variance, properties, probability distribution of inter arrival times, Random telegraph process, Gaussian process – properties. Statistical Inference-Estimation - Testing of hypothesis.
References:

Internal Continuous Assessment (Maximum Marks-50)

50% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, quiz, literature survey, seminar, term-project, software exercises, etc.
20% - Regularity in the class

University Examination Pattern:

Examination duration: 3 hours Maximum Total Marks: 100

The question paper shall consist of 2 parts.

Part A (20 marks) – Ten Short answer questions of 2 marks each. All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

Part B (80 Marks) - Candidates have to answer one full question out of the two from each module. Each question carries 20 marks.

Course Outcome:

After successful completion of this course, the students will be able to master the concepts of probability and Random analysis which they can use in engineering fields.
13.402 HUMANITIES (T)

Teaching Scheme: 3(L) - 0(T) - 0(P)

Credits: 3

Course Objectives:

- To explore the way in which economic forces operate in the Indian Economy.
- The subject will cover analysis of sectors, dimensions of growth, investment, inflation and the role of government will also be examined.
- The principle aim of this subject is to provide students with some basic techniques of economic analysis to understand the economic processes with particular reference to India.
- To give basic concepts of book keeping and accounting

PART I ECONOMICS (2 periods per week)

Module – I

Definition of Economics – Central Economic Problems – Choice of techniques – Production possibility curve – Opportunity Cost - Micro & Macro Economics

Production function – Law of Variable proportion – Returns to scale – Iso-quants and Isocost line- Least cost combination of inputs – Cost concepts – Private cost and Social Cost -

Short run and Long run cost- cost curves – Revenue – Marginal, Average and Total Revenue - Break even Analysis

Module – II

PART-II- ACCOUNTANCY (1 Period per week)

Module – III

Final accounts: Preparation of trading and profit and loss Account- Balance sheet (with simple problems) - Introduction to accounting packages (Description only).

References

Internal Continuous Assessment (Maximum Marks-50)

50% - Tests (minimum 2)

30% - Assignments (minimum 2) such as home work, problem solving, literature survey, seminar, term-project, software exercises, etc.

20% - Regularity in the class

University Examination Pattern:

Examination duration: 3 hours Maximum Total Marks: 100

The question paper shall consist of 2 parts. Part I and Part II to be answered in separate answer books.
Part I Economics (70 marks) – Part I shall consist of 2 parts.

Part A (20 Marks) - Ten short answer questions of 2 marks each, covering entire syllabus of Part I (five questions each from Module I and Module II). All questions are compulsory.

Part B (50 marks) - Candidates have to answer one full question out of the two from Part I (Module I and Module II). Each question carries 25 marks.

Part II Accountancy (30 marks)
Candidates have to answer two full questions out of the three from Part II (Module III). Each question carries 15 marks.

Course outcome:

- The students will be acquainted with its basic concepts, terminology, principles and assumptions of Economics.
- It will help students for optimum or best use of resources of the country.
- It helps students to use the understanding of Economics of daily life.
- The students will get acquainted with the basics of book keeping and accounting.
18.403 COMPUTER ORGANISATION & ARCHITECTURE (T)

Teaching Scheme: 3(L) - 1(T) - 0(P)
Credits: 3

Course Objectives:

- To have a thorough understanding of the basic structure and operation of a digital Computer and to analyse their performance
- To discuss in detail the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division.
- To study the different ways of communicating with I/O devices and standard I/O interfaces.
- To study the issues affecting modern processors including cache and virtual Memories, pipeline etc.

Module – I

Functional units of a Computer - Von Neuman Architecture, Harvard Architecture - CISC and RISC.
Computer Arithmetic - Implementing addition, subtraction, multiplication and division - Floating point representation - Floating point operations & their implementation.

MIPS – architecture, addressing modes, instruction format and instruction set. Translating a C program into MIPS assembly language and machine codes.

Module – II

Design of Data path and Control (based on MIPS instruction set) - Design of data path for memory reference, arithmetic/logical (add, sub, and, or) and branch instructions. Control of the single clock cycle implementation and Multi cycle implementation - Fetch, Decode, Execute and Memory access cycles. Design of control unit - Hardwired and Micro programmed control.

Module – III

Memory hierarchy - Main Memory, Cache Memory - Elements of Cache design, mapping techniques - Replacement algorithm - Cache performance - interleaved memory, Virtual memory - Page Table, Page Replacement, Address translation. Internal Memory technology - Semiconductor main memory, DRAM and SRAM, Types of ROM. External Memory - Magnetic Disk, RAID, Optical Memory.
Module – IV

References:

Internal Continuous Assessment *(Maximum Marks-50)*

50% - Tests *(minimum 2)*

30% - Assignments *(minimum 2) such as home work, problem solving, quiz, literature survey, seminar, term-project, software exercises, etc.*

20% - Regularity in the class

University Examination Pattern:

Examination duration: 3 hours Maximum Total Marks: 100

The question paper shall consist of 2 parts.

Part A (20 marks) - Ten Short answer questions of 2 marks each. All questions are compulsory. There should be at least two questions from each module and not more than three questions from any module.

Part B (80 Marks) - Candidates have to answer one full question out of the two from each module. Each question carries 20 marks.
Note: Question paper should contain minimum 40% and maximum 60% Problems, Design and Analysis.

Course Outcome:

After the completion of this course, students will get necessary foundation regarding the computer architecture and its peripherals.
18.404 DIGITAL SIGNAL PROCESSING (T)

Teaching Scheme: 3(L) - 1(T) - 0(P)
Credits: 4

Course Objective:

- Introduction to the principle, algorithms and applications of modern Digital Signal Processing.
- To give an understanding of essential DSP principles and Applications and to demonstrate the importance of the subject to electronics engineering as practised today.

Module – I

The Discrete Fourier Transform, Properties of DFT, Linear Convolution and circular convolution based on the DFT, overlap save and overlap add methods, Frequency Analysis of Signals using DFT. Computation of DFT: Decimation in time and decimation in frequency FFT Algorithms (Radix 2 only), efficient computation of DFT of Two Real Sequences and a 2N-Point Real Sequence, IDFT.

Module – II

Design of FIR Filters- Symmetric and Anti-symmetric FIR Filters, Design of linear phase FIR Filters using Window method (Rectangular, Hamming and Hanning) and Frequency Sampling Method. Design of IIR Digital Filters from Analog Filters (Butterworth). IIR Filter Design by Impulse Invariance and Bilinear Transformation. Frequency Transformations in the Analog and Digital Domain.

Module – III

Block diagram and signal flow graph representation of filters
Filter structures: FIR Systems- Direct Form, Cascade Form and Lattice Structure. IIR Systems- Direct Form, Transposed Form, Cascade Form and Parallel Form.
Finite word length effect in DSP systems: Introduction (analysis not required), fixed- point and floating-point DSP arithmetic, ADC quantization noise. Finite word length effect in IIR Digital Filters: coefficient quantization errors.

Module – IV

References:

Internal Continuous Assessment *(Maximum Marks-50)*

50% - Tests (minimum 2)

30% - Assignments (minimum 2) such as home work, problem solving, quiz, literature survey, seminar, term-project, software exercises, etc.

20% - Regularity in the class

University Examination Pattern:

Examination duration: 3 hours Maximum Total Marks: 100

The question paper shall consist of 2 parts.

Part A (20 marks) - Ten Short answer questions of 2 marks each. All questions are compulsory. There should be at least two questions from each module and not more than three questions from any module.

Part B (80 Marks) - Candidates have to answer one full question out of the two from each module. Each question carries 20 marks.

Note: Question paper should contain minimum 60% and maximum 80% Problems, Derivations and Proofs.

Course Outcome:

After the course student will understand the principle of digital signal processing and applications. The utilization of DSP to electronic engineering will also studied.
18.405 ANALOG COMMUNICATION (T)

Teaching Scheme: 3(L) - 1(T) - 0(P)
Credits: 3

Course Objectives: To study the concepts and types modulation schemes. To study different types of radio transmitters and receivers. To study the principles of wired telephone system. Understand the basic principles of digital communication.

Module – I

Module – II

Module – III
Angle Modulation- Principles of Frequency Modulation, Wave forms and analysis, Comparison between AM and FM. Phase modulation – Equivalence between PM and FM. Sinusoidal phase modulation. Frequency Modulator Circuits – Basic Reactance modulator, Varactor diode modulator, FM Transmitters – Direct and Indirect methods. FM detectors - Slope detector, Balanced Slope Detector, Foster Seeley Discriminator, Automatic Frequency Control, Amplitude Limiters, Pre-emphasis and De-emphasis. FM broadcast Receiver.

Module – IV

References:

Internal Continuous Assessment (Maximum Marks-50)
50% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, quiz, literature survey, seminar, term-project, software exercises, etc
20% - Regularity in the class

University Examination Pattern:
Examination duration: 3 hours Maximum Total Marks: 100

The question paper shall consist of 2 parts.
Part A (20 marks) - Ten Short answer questions of 2 marks each. All questions are compulsory. There should be at least two questions from each module and not more than three questions from any module.

Part B (80 Marks) - Candidates have to answer one full question out of the two from each module. Each question carries 20 marks.

Note: Question paper should contain minimum 40% and maximum 60% Problems and Analysis.
Course Outcome: At the end of the course the students will be familiar with the modulation schemes and well versed with types of radio receivers. The students will be able to explain the working of wired telephone system and conventional telephone exchange.
18.406 ANALOG INTEGRATED CIRCUITS (T)

Teaching Scheme: 3(L) - 1(T) - 0(P)
Credits: 3

Course Objective:

- To equips the students with a sound understanding of fundamental concepts of operational amplifiers.
- To know the diversity of operations that the op amp can perform in a wide range of applications.
- To study the different types of ICs and its applications.

Module – I

Module – II
Oscillators -Phase-shift, Wein-Bridge, Multivibrators. Comparators, Schmitt Trigger, Astable, Monostable, Square and triangular waveform generator.
Filters: Butterworth 1st order Low pass and high pass. Biquadratic filter (single op-amp with finite gain non inverting-Sallen and key) of Low pass, High pass, Band pass and Notch filters.

Module – III
Specialized ICs: Switched capacitor Resistor, switched capacitor Integrator, First order SC filter.
D/A converters: DAC characteristics and Parameters- Weighted resistor, R-2R network.
A/D converter: ADC characteristics, Types - Dual slope, Counter ramp, Successive approximation, Principle of oversampled ADC.

Module – IV
Analog multipliers: Introduction, emitter coupled pair as simple multiplier, Gilbert multiplier cell.
Monolithic Voltage Regulators – three terminal voltage regulators 78XX and 79XX series, IC723 and its Applications, Current boosting, short circuit and fold back protection.
References:-

Internal Continuous Assessment (Maximum Marks-50)
50% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, quiz, literature survey, seminar, term-project, software exercises, etc.
20% - Regularity in the class

University Examination Pattern:
Examination duration: 3 hours Maximum Total Marks: 100
The question paper shall consist of 2 parts.
Part A (20 marks) - Ten Short answer questions of 2 marks each. All questions are compulsory. There should be at least two questions from each module and not more than three questions from any module.
Part B (80 Marks) - Candidates have to answer one full question out of the two from each module. Each question carries 20 marks.

Note: Question paper should contain minimum 50% and maximum 70% Design, Analysis and Problems.

Course Outcome:
At the end of the course, students shall be able to design electronic circuits using ICs.
18.407 LOGIC CIRCUIT DESIGN LAB (T)

Teaching Scheme: 0(L) - 0(T) - 3(P)
Credits: 2

Course Objective:
- To familiarise various types of Digital ICs.
- To assemble digital circuits using ICs and study the performance.

List of Experiments:

1. Realization of functions using basic and universal gates (SOP and POS forms).
2. Design and Realization of half/full adder and subtractor using basic gates and universal gates.
3. 4 bit adder/subtractor and BCD adder using 7483.
4. 2/3 bit binary comparator.
5. Binary to Gray and Gray to Binary converters.
7. Asynchronous Counter: Realization of 4-bit counter
9. Asynchronous Counter: 3 bit up/down counter
10. Synchronous Counter: Realization of 4-bit up/down counter.
12. Synchronous Counter: 3 bit up/down counter
13. Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF & 7495)
14. Ring counter and Johnson Counter. (using FF & 7495)
15. Realization of counters using IC’s (7490, 7492, 7493).
16. Multiplexers and De-multiplexers using gates and ICs. (74150, 74154),
17. Realization of combinational circuits using MUX & DEMUX.
18. Random sequence generator.
Internal Continuous Assessment (Maximum Marks-50)
40% - Test
40% - Class work and Record
20% - Regularity in the class

University Examination Pattern:
Examination duration: 3 hours Maximum Total Marks: 100
Questions based on 1 to 16 experiments prescribed in the list.
25% - Circuit Design
15% - Performance (Wiring, use of equipment/instruments and trouble shooting)
35% - Result
25% - Viva voce
Candidate shall submit the certified fair record for endorsement by the external examiner.

Course Outcome:
From the practical exposure, the students can design digital circuits such as registers, counters, arithmetical circuits, flip flops etc.
18.408 ANALOG INTEGRATED CIRCUITS LAB (T)

Teaching Scheme: 0(L) - 0(T) - 3(P)
Credits: 2

Course Objective:
- To enable the students to have the practical knowledge of different analog ICs.
- To study the specifications of ICs and to design circuits using ICs.

List of Experiments:
1. Familiarization of Operational amplifiers - Inverting and Non inverting amplifiers, frequency response, Adder, Integrator, comparators.
3. Difference Amplifier and Instrumentation amplifier.
7. Wien bridge oscillator using op-amplifier.
8. RC Phase shift Oscillator.
10. Active second order filters using Op-Amp. (LPF, HPF, BPF and BSF)

Internal Continuous Assessment (Maximum Marks-50)
40% - Test
40% - Class work and Record
20% - Regularity in the class

University Examination Pattern:
Examination duration: 3 hours
Maximum Total Marks: 100
Questions based on the list of experiments prescribed
25% - Circuit Design
15% - Performance (Wiring, use of equipment/instruments and trouble shooting)
35% - Result
25% - Viva voce Candidate shall submit the certified fair record for endorsement by the external examiner.

Course Outcome: After completion the course student will understand the working of circuits using ICs and will be able to design circuits using ICs.