UNIVERSITY OF KERALA Model Question Paper- M. Sc. Examination Branch : Mathematics MM211 LINEAR ALGEBRA (2020 Admission onwards)

Time: 3 hours

Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Determine whether $\{(x_1, x_2, x_3) \in F^3 : x_1x_2x_3 = 0\}$ is a subspace of F^3 .
- 2. Prove that any two bases of a finite dimensional vector space have same length.
- 3. If V and W are finite dimensional vector spaces such that dimV > dimW, then prove that no linear map from V to W is injective.
- 4. Suppose T is a linear map from V to F. Prove that $u \in V$ is not in null T, then $V = null T \oplus \{au : a \in F\}.$
- 5. Suppose $S, T \in L(V)$ are such that ST = TS. Prove that $null(T \lambda I)$ is invariant under S for every $\lambda \in F$.
- 6. Suppose $T \in L(V)$ and (v_1, v_2, \dots, v_n) is a basis of V. Prove that if $Tv_k \in span(v_1, v_2, \dots, v_n)$ for each $k = 1, 2, \dots, n$, then $span(v_1, v_2, \dots, v_n)$ is invariant under T for each $k = 1, 2, \dots, n$.
- 7. Suppose $T \in L(V)$ and λ is an eigen value of T. Then prove that the set of generalized eigen vectors of T corresponding to λ equals $null (T \lambda I)^{\dim V}$.
- 8. Prove that if A and B are square invertible matrices of same size and AB = I, then prove that BA = I. $5 \times 3 = 15$

Part B

Answer all questions from 9 to 13 Each question carries 12 marks

- 9. A. (a) Suppose that U and W are subspaces of V. Prove that $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$.
 - (b) State and prove Linear Dependence Lemma.

- B. (a) If U_1 and U_2 are subspaces of a finite dimensional vector space V, then prove that $dim(U_1 + U_2) = dimU_1 + dimU_2 - dim(U_1 \cap U_2)$.
 - (b) Define basis of a vector space. Prove that every spanning list in a vector space can be reduced to a basis.
- 10. A. (a) Define null space null T of a linear map $T: V \to W$. Prove that null T is a subspace of V. Also prove that T injective if and only if $null T = \{0\}$.
 - (b) Define matrix of vector v in a vector space V. Suppose $T \in L(V, W)$ and (v_1, v_2, \dots, v_n) is a basis of V and (w_1, w_2, \dots, w_m) is a basis of W. Prove that $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$ for every $v \in V$.

OR

- B. (a) Prove that a linear map is invertible if and only if it is injective and surjective.
 - (b) Prove that two finite dimensional vector spaces are isomorphic if and only if they have the same dimension.
- 11. A. (a) Prove that every operator on a finite dimensional, nonzero complex vector space has an eigen value.
 - (b) Suppose V is complex vector space and $T \in L(V)$. Prove that T has an upper triangular matrix with respect to some basis of V.

OR

- B. (a) If $T \in L(V)$ has dimV distinct eigen values, then prove that T has a diagonal matrix with respect to some basis of V.
 - (b) Prove that every operator on a finite dimensional, nonzero real vector space has an invariant subspace of dimension 1 or 2.
- 12. A (a) State and prove Cayley Hamilton Theorem.
 - (b) Suppose V is a complex vector space. If $T \in L(V)$ is invertible, prove that T has a square root.

OR

- B (a) Define minimal polynomial of $T \in L(V)$. Prove that the roots of the minimal polynomial of T are precisely the eigen values of T.
 - (b) Suppose V is a complex vector space. If $T \in L(V)$, prove that there is a basis of V that is a Jordan basis for T.

- 13. A. (a) If A and B are square matrices of same size, prove that trace(AB) = trace(BA).
 - (b) Define determinant of a matrix. Prove that an operator is invertible if and only of determinant is nonzero.

OR

- B. (a) Suppose $T \in L(V)$. Prove that the characteristic polynomial of T equals det(zI T).
 - (b) If A and B are square matrices of same size, prove that det(AB) = det(BA) = (detA)(detB).

•

 $5\times 12=60$