MODEL QUESTION PAPER <u>13.702:DIGITAL SIGNAL PROCESSING(E)</u>

Time: 3 hrs	Max: 100 Marks
Answer all questions from Part-A	
1) Give the conditions for existence for Fourier series and state the reas	on for Fourier
Transform analysis	(2)
2) Give the advantages and limitations of DSP	(2)
3) Give the steps for checking time invariance with a suitable example	(2)
4) The impulse response of a discrete LTI system is given by $\frac{1}{2}^n u[n] +$	$\left(-\frac{1}{2}^n\right)u[n]$.Check
for stability	(2)
5) State any two properties of DTFT	(2)
6) Give the combined conditions for causality and stability of any DT L	ΓI systems in Z
domain.	(2)
7) Give any four properties of ROC.	(2)
8) What is twiddle factor	(2)
9) State transposition theorem.	(2)
10) Obtain the DF-II realization of $y[n]+y[n-1] - 4y[n-3] = x[n] + 3x[n-2]$	(2)

Part – B

Answer any one full question from each module

MODULE-I

11) a. Derive the expression for convolution sum	(5)
b. Give the steps for obtaining tabular and functional con	nvolution sum with suitable
examples	(5)
c.Determine the response of the relaxed system characte	rized by the impulse response
$h[n] = 0.5^{n}u[n]$ and input $x[n] = 2^{n}u[n]$	(10)
OR	

12) Check whether the given systems are linear, shift variant, causal and stable

a. y[n] = x[4n+1]b. y[n] = x[n]u[n]c. y[n] = x[n]+nx[n+1]d. $y[n] = log_{10}x[n]$ e. $y[n] = x^{2}[n]$

(5*4=20)

MODULE-II

13 .a.Obtain the trigonometric Fourier series of Half wave rectifier output	(8)
b. State Parseval's Theorem	(2)
c. Find the Fourier transform of $sgn(n)$ and sketch the spectra	(10)

14.a. Obtain the 8 point DIF and DIT FFT of given sequence {8,8,8,0,1,4,2,3}
b. Obtain the convolution of the sequence {2,1,2,1} and {1,2,3,4} in circular and matrix method

MODULE-II

15.a. Find the output response of the discrete time system described by the following difference equation.y[n]-0.75y[n-1]+0.166y[n-2]=x[n] where $x[n]=\frac{1^n}{5}u[n]$ subjected to the initial conditions y[-1] = 0 and y[-2] = 1. Also find out the step response (15)

b.Realize the given system in direct form-I y[n] = 0.5y[n-1] - 0.25y[n-2] + x[n] + 0.4 x[n-1]

OR

(5)

16.a. Obtain the inverse Z transform of the function $X(Z) = \frac{2}{Z + 2}$ using the following

methods.

- i. Partial fraction method
- ii.Power Series Expansioniii.Residue Method(15)

13.b. State and prove any two properties of Z transform (5)

MODULE-IV

17.a. State the desirable properties required to convert an analog filter to an digital IIR filter give methods for the same. (5) b. For the analog transfer function $(S) = \frac{2}{(S+1)(S+2)}$. Determine its digital equivalent using impulse invariance method and bilinear transformation method taking T= 1sec (15)

OR

18.a.Explain with a suitable example the steps for design of linear phase filters using hamming window (10)

b.Compare Chebyshev and Butterworth filters. (10)