Model Question Paper Seventh Semester B.Tech. Degree Examination, November 2016 (2013 scheme) CHEMICAL ENGINEERING BRANCH 13.701: CHEMICAL ENGINEERING DESIGN – I (H)

Time: 3 Hours

Max. Marks: 100

Instructions:

- 1. Answer **any one full** question from **each** module.
- 2. The certified copies or originals of the following codes are **permitted** in the exam hall. IS Codes-IS 2825:1969, IS 1730:1989, IS 803:1976, IS 4045
- 3. Certified copies of relevant data tables, charts and graphs for the design.
- 4. Assume missing data suitably.

Module 1

Suggest a suitable design for a storage tank to store 250000 kg of benzene required in the production of alkyl benzene sulphonate. The storage tank will be filled to 90% of its capacity and maintained at atmospheric condition. Due to space limitations, maximum tank diameter which can be used is 3.6 m. material of construction is mild steel of density 7850kg/m³ and allowable stress 125 N/mm² (50 Marks)

OR

2. An integral flange with a plain face for a heat Exchanger shell is required to be designed

to the following specification				
Design pressure	=	1 MN/m^2		
Design temperature	=	160 °C		
Flange material	=	IS 2004-1962 Class 2		
Bolting material is Cr/Mo				
Gasket material is asbestos composite				
Shell outside diameter	=	1 m		
Shell inside diameter	=	0.98 m		
Shell thickness	=	0.1 m		
Allowable stress for flange material = 100 MN/m^2				
Allowable stress for bolting	(50 Marks)			

Module 2

3. Perform the mechanical design of the tall vertical vessel with following specifications: Maximum wind speed expected (upto 20 m) – 140 km/h Shell outside diameter – 2 m Shell length, tangent to tangent – 16 m Skirt height – 4 m Operating temperature – 300 °C

Operating pressure – 0.7 MN/m2 Design temperature – 320 ^oC Design pressure -0.8 MN/m² Shell material: IS 2002-1962 grade II B Shell is double welded with Butt joint no stress soldering or radiographing. Corrosion allowance – 3 mm Tray spacing -0.75 m Top disengaging space -1 mBottom separate space – 2.75 m Weir height – 75 mm for all trays Down comer clearance -25 mm for all trays Weight of each head – 7.5 KN Tray loading excluding liquid – 1 KN/m² Tray support rings – 60 X 60 X 10 mm angle Insulation – 75 mm asbestos Accessories: 1 lagged ladder Design in accordance with IS code for unfired pressure vessel with class II vessel type. Neglect seismic forces. (50 Marks)

OR

4. Design a bracket support for a column of diameter 2m, height 4m with a ground clearance 1.2 m to be erected in the opening air where the maximum wind velocity is expected to be 140 km/h under inclement weather conditions. The maximum weight of the vessel along with the contents can be approximated as 25 tons. The permissible stresses for shell and support material are:

Tension	=	14.29kgf/mm ²	
Compression	=	12.48kgf/mm ²	
Bending	=	15.75kgf/mm ²	(50 Marks)