Fifth Semester B.Tech Degree Examination (2013 Scheme) Model Paper 13.505 APPLIED ELECTROMAGNETIC THEORY (T) Time:3Hours Max.Marks:100

Part A (Answer all Questions; Each carries 2Marks)

1. Transform the vector $10a_y$ at M(r=4, θ =135°, φ =120°)

2.A= e^{-y} (cosx a_x -sinx a_y). Find ∇A

3.Derive the capacitance of a coaxial cable.

4.In region 1 defined by $z < 0 \mu_{r1} = 3$ and

 $H_1 = 1/\mu_0(0.2a_x + 0.5a_y + 1a_z)$. Find H_2

If $\theta_2 = 45^\circ$.

5.In free space $D=D_msin(\omega t+\beta z)a_x$. Find H

6.Determine the γ (propagation constant) for a given material having

 $\mu_{r1}=1, \epsilon_{r1}=8 \& \sigma=0.25 pS/m$.Wave frequency is 1.6 MHz.

7.Differentiate between lossless & distortionless line.

8.Why at high frequencies we go for distributed elements.

9.Sketch the field patterns inside WR 90 for TM ₂₁ mode.

10.Derive the relationship between λ_g , $\lambda_c \& \lambda_0$

(10x2=20Marks)

Part B (Answer one Question from Each Module ;carrying 20Marks)

<u>Module 1</u>

11a)Find E & V for the region between 2 concentric cylinders where V=0 V at

 $\label{eq:r=1mm & V=150V at r=20mm} \qquad (10 \mbox{ Marks}) \\ b) \mbox{ Derive the inductance of 2 wire line} \qquad (5 \mbox{ Marks}) \\ c) \mbox{ For r>2 D=(20/r^2)a_r in spherical co-ordinates. Find the} \\ charge density \qquad (5 \mbox{ Marks}) \\ 12a) \mbox{ For a line charge $\rho_1=(10^{-9}/2)C/m$ on z axis. find VAB} \\ where \mbox{ A}(2m,\pi/2,0) \mbox{ & B}(4m,\pi,5m) \qquad (5 \mbox{ Marks}) \\ b) \mbox{ Find the work done in moving a charge $Q=-20\mu C$ \\ from the origin to (4,2,0)m in the field $E=2(x+4y)a_x+8xa_y$ \\ V/m along the path $x^2=8y$ \qquad (7 \mbox{ Marks}) \\ \end{array}$

c)State Biot-Savart's law. Show that Ampere's law is a special case (8 Marks)

Module 2

13 a)In a material for which σ =5 S/m and ϵ r=1; Find conduction and Displacement current densities and the frequency at which they have equal magnitudes (7 Marks)

b)A square coil 0.6m rotates about x axis at ω =60 π rad/s in a field B=0.8a_z T assuming initially coil is in x-y plane

and rotate about x-axis while making α with y-z plane.Find induced voltage(5 Marks)

c)Region 1 where μ_{r1} =4 is the side of the plane y+z=1 containing the origin

In the region 2 μ_{r2} =6 B₁=2a_x+1a_y (T).Find B₂ & H₂ (8 Marks)

14a)A travelling wave is described by $y=10sin(\beta z-\omega t)$.Sketch the wave at T=0

And T=t1 when advanced by $\lambda/8$ if velocity is c and $\omega=2x10^6$ rad/s (10 Marks)

b)A wave propagates from a dielectric medium to the interface with free space. If the angle of incidence is the critical angle of 20°.find ϵ_r (5marks)

c)Define the terms phase velocity and group velocity (5Marks)

<u>Module 3</u>

15 a)If E=100/r*sin θ cos(ω t- β r)a_{θ} (V/m) ;H=0.265/r*sin θ cos(ω t- β r)a_{φ} A/m Represents field at a large distance from an antenna in free space .Find the average power crossing hemispherical shell at r=1km $0 \le \theta \le \pi/2$ (7Marks)

b)Show that a linearly polarized wave is a combination of 2 circular polarized waves

(5Marks)

c)A free space conductor interface has $H_0^i = 1A/m$ on the free space side

Frequency is 31.8 MHz and constants are $\epsilon_r = \mu_r = 1$ $\sigma = 1.26$ MS/m. Find H^r₀, H^t₀ and depth of penetration H^t. (8Marks)

16a)A 600 Ω transmission line is 150m long operates at 400kHz with α =2.4x10⁻³ Np/m and β =0.0212 rad/m and supplies a load impedance of Z_L=424.3<45°

Find length of the line in wavelengths $\Gamma_{\scriptscriptstyle L},\Gamma_{\scriptscriptstyle S}$ and $Z_{\scriptscriptstyle S}.For$ a received voltage 50<0°

Find Vs,position on the line where voltage is maximum and its magnitude

(12 Marks)

b) For a "twin lead " transmission line 2 copper wires (σ_c =50MS/m)are

embedded 0.625 in. apart in a dielectric with ϵ_r =2.4.Neglecting losses determine diameter of conductors for a characteristic impedance Z $_0$ =300 Ω . Find dc and AC resistance at 100MHz. (8 Marks)

Module 4

17. A lossless line 70 Ω with ϵ_r =2.1 is terminated at Z_L=50<30° at 320 MHz.

The load is to be matched to a 50 Ω shorted line with ϵ_r =2.3 connected in Parallel .Stub must be at least 5cm from the load. If a match is possible find The distance from the load and length of stub . Use Smith chart

(20 Marks)

18a)A lossless air dielectric waveguide has a=7.214cm and b=3.404cm.For TM11

Mode propagating at a frequency 1.1 times cutoff frequency of the mode

Calculate a)critical wavenumber b)cutoff frequency c)operating frequency

d)propagation constant e)guide wavelength,f)phase
velocity g)wave impedance (14 Marks)
b) Show that E and H are mutually perpendicular in any
TE or TM wave (6 Marks)