Fifth Semester B.Tech Degree Examination
(2013 Scheme) Model Paper

13.505 APPLIED ELECTROMAGNETIC THEORY (T)

Time:3Hours
Max.Marks:100

Part A (Answer all Questions;Each carries 2Marks)

1. Transform the vector $10 a_{y}$ at $M\left(r=4, \theta=135^{\circ}, \varphi=120^{\circ}\right)$
2. $A=\mathbf{e}^{-y}\left(\cos x a_{x}-\sin x a_{y}\right)$. Find $\nabla . A$
3.Derive the capacitance of a coaxial cable.
4.In region 1 defined by $\mathbf{z < 0} \mu_{r 1}=3$ and
$H_{1}=1 / \mu_{0}\left(0.2 a_{x}+0.5 a_{y}+1 a_{z}\right)$. Find H_{2}
If $\boldsymbol{\theta}_{2}=45^{\circ}$.
5.In free space $D=D_{m} \sin (\omega t+\beta z) a_{x}$. Find H
6.Determine the $\gamma($ propagation constant) for a given material having
$\mu_{r 1}=1, \varepsilon_{r 1}=8 \& \sigma=0.25 p S / m$.Wave frequency is 1.6 MHz .
7.Differentiate between lossless \& distortionless line.
8.Why at high frequencies we go for distributed elements.
9.Sketch the field patterns inside WR 90 for TM ${ }_{21}$ mode.
10.Derive the relationship between $\lambda_{g}, \lambda_{c} \& \lambda_{0}$

Part B (Answer one Question from Each Module ;carrying

 20Marks)
Module 1

11a)Find $E \& V$ for the region between 2 concentric cylinders where V=0 V at
$r=1 \mathrm{~mm} \& \mathrm{~V}=150 \mathrm{~V}$ at $\mathrm{r}=20 \mathrm{~mm}$
(10 Marks)
b) Derive the inductance of $\mathbf{2}$ wire line (5 Marks)
c) For $r>2 \mathrm{D}=\left(20 / \mathrm{r}^{2}\right) \mathrm{a}_{\mathrm{r}}$ in spherical co-ordinates. Find the charge density

12a)For a line charge $\rho_{1}=\left(10^{-9} / 2\right) C / m$ on z axis. find VAB where $A(2 m, \pi / 2,0) \& \quad B(4 m, \pi, 5 m) \quad$ (5Marks)
b) Find the work done in moving a charge $Q=-20 \mu \mathrm{C}$ from the origin to $(4,2,0) m$ in the field $E=2(x+4 y) a_{x}+8 x a_{y}$ V/m along the path $x^{2}=8 y$
(7 Marks)
c)State Biot-Savart's law. Show that Ampere's law is a special case (8 Marks)

Module 2

13 a)In a material for which $\sigma=5 \mathrm{~S} / \mathrm{m}$ and $\varepsilon \mathrm{\varepsilon}=1$; Find conduction and Displacement current densities and the frequency at which they have equal magnitudes
(7 Marks)
b)A square coil 0.6 m rotates about x axis at $\omega=60 \pi r a d / s$ in a field $B=0.8 a_{z} T$ assuming initially coil is in $x-y$ plane
and rotate about x-axis while making α with $y-z$ plane. Find induced voltage
(5 Marks)
c) Region 1 where $\mu_{r 1}=4$ is the side of the plane $y+z=1$ containing the origin

In the region $2 \mu_{\mathrm{r} 2}=6 \mathrm{~B}_{1}=\mathbf{2} a_{\mathrm{x}}+1 \mathrm{a}_{\mathrm{y}}(\mathrm{T})$. Find $\mathrm{B}_{2} \& \mathrm{H}_{\mathbf{2}}$ (8 Marks)

14a)A travelling wave is described by $y=10 \sin (\beta z-$ $\omega t)$. Sketch the wave at $T=0$

And $T=t 1$ when advanced by $\lambda / 8$ if velocity is c and $\omega=2 \times 10^{6} \mathrm{rad} / \mathrm{s}$ (10 Marks)
b)A wave propagates from a dielectric medium to the interface with free space. If the angle of incidence is the critical angle of 20°.find ε_{r} (5marks)
c) Define the terms phase velocity and group velocity (5Marks)

Module 3

15 a)If $E=100 / r^{*} \sin \theta \cos (\omega t-\beta r) a_{\theta} \quad(V / m)$
; $H=0.265 / r^{*} \sin \theta \cos (\omega t-\beta r) a_{\varphi} A / m$

Represents field at a large distance from an antenna in free space. Find the average power crossing hemispherical shell at $\mathbf{r}=1 \mathrm{~km} 0 \leq \boldsymbol{0} \leq \pi / 2 \quad$ (7Marks)
b)Show that a linearly polarized wave is a combination of 2 circular polarized waves
(5Marks)
c) A free space conductor interface has $\mathrm{H}^{\mathbf{i}}=1 \mathrm{~A} / \mathrm{m}$ on the free space side

Frequency is 31.8 MHz and constants are $\varepsilon_{r}=\mu_{r}=1$ $\sigma=1.26 \mathrm{MS} / \mathrm{m}$. Find $\mathrm{H}^{\mathrm{r}}, \mathrm{H}^{\mathrm{t}}$ o and depth of penetration H^{t}. (8Marks)

16a)A 600Ω transmission line is 150 m long operates at 400 kHz with $\alpha=2.4 \times 10^{-3} \mathrm{~Np} / \mathrm{m}$ and $\beta=0.0212 \mathrm{rad} / \mathrm{m}$ and supplies a load impedance of $Z_{L}=424.3<45^{\circ}$

Find length of the line in wavelengths Γ_{L}, Γ_{s} and Z_{s}. For a received voltage $50<0^{\circ}$

Find Vs,position on the line where voltage is maximum and its magnitude
(12 Marks)
b) For a "twin lead " transmission line 2 copper wires ($\sigma_{c}=50 \mathrm{MS} / \mathrm{m}$) are
embedded 0.625 in. apart in a dielectric with ε_{r} =2.4.Neglecting losses determine diameter of conductors
for a characteristic impedanceZ ${ }_{0}=300 \Omega$. Find dc and $A C$ resistance at $\mathbf{1 0 0 M H z}$.
(8 Marks)

Module 4

17. A lossless line 70Ω with $\varepsilon_{r}=2.1$ is terminated at $Z_{\mathrm{L}}=\mathbf{5 0}<\mathbf{3 0 ^ { \circ }}$ at $\mathbf{3 2 0} \mathbf{~ M H z}$.

The load is to be matched to a 50Ω shorted line with ε_{r} $=2.3$ connected in Parallel .Stub must be at least $5 \mathbf{c m}$ from the load. If a match is possible find The distance from the load and length of stub. Use Smith chart
(20 Marks)
18a)A lossless air dielectric waveguide has $a=7.214 \mathrm{~cm}$ and $b=3.404 \mathrm{~cm}$. For TM11

Mode propagating at a frequency 1.1 times cutoff frequency of the mode

Calculate a)critical wavenumber b)cutoff frequency c)operating frequency
d)propagation constant e)guide wavelength,f)phase velocity g)wave impedance
(14 Marks)
b) Show that E and H are mutually perpendicular in any TE or TM wave
(6 Marks)

