FOURTH SEMESTER B.TECH DEGREE EXAMINATIONS (2013 Scheme) 13.401 ENGINEERING MATHEMATICS III (S) MODEL QUESTION PAPER

Time: 3 Hours

Maximum Marks: 100

PART –A

Answer all questions. Each question carries 4 marks

- 1. If u and v are harmonic functions, prove that $(u_y v_x) + i(u_x + v_y)$ is analytic
- 2. Expand $\frac{1}{z^2}$ as Taylor series about z = 2
- 3. Find the poles and residues of $\frac{1}{z \sin z}$
- 4. By means of Lagrange's formula prove that $y_3 = 0.05(y_0 + y_6) - 0.3(y_1 + y_5) + 0.75(y_2 + y_4)$
- 5. Find the approximate value of $\int_0^1 \frac{1}{1+x^2} dx$ by Trapezoidal rule

PART -B

Answer one full question from each module. Each question carries 20 marks

MODULE I

- 6. a) Show that $f(z) = \sqrt{|xy|}$ satisfies CR equations at z=0 but not differentiable at z=0
 - b) Find the analytic function f(z) = u + tv if $u v = (x y)(x^2 + 4xy + y^2)$

c) Under the transformation w = 1/z, find the image of |z - 2i| = 2

- 7. a) If f(z) is a function with continuous second order partial derivatives show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} = 4 \frac{\partial^2 f}{\partial z \partial z}$
 - **b**) Discuss the transformation w = sinz.

c) Find the bilinear mapping that maps $z = i_i - i_i \mathbf{1}$ in to $w = 0, 1, \infty$ respectively

MODULE II

- 8. a) Find Laurent's series expansion about z = 0 for $\frac{z^2-1}{z^2+5z+6}$ in 2 < |z| < 3b) Using Cauchy's integral formula, evaluate $\int_C \frac{z}{(z-1)(z-2)^2} dz$ where C is $|z-2| = \frac{1}{2}$
- 9. a) State Cauchy's Residue theorem and hence evaluate $\int_C \frac{dz}{(z^2+4)^2}$ where *C* is |z-i| = 2

b) Evaluate $\int_0^\infty \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$

MODULE III

- 10. a) Solve $x^3 9x + 1 = 0$ for the root lying between 2 and 4 by Regula falsi method
 - b) Solve by Gauss –Seidel method

10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14

11. a) Find by Newton –Raphson method, the real root of $log_{ex} - cosx = 0$.

b) The population of a certain town in India are as follows.

Year	: 1	921	1931	1941	1951	1961	1971
Population(in lakhs)	:	12	15	20	27	39	52
		1	0.05	1 1000	-		

Estimate the population in the year 1925 and 1965 .

MODULE IV

12. a) Using Taylor series method, find y when x = 1.3, given that $y' = x^2y - 1$ and y = 2 when x = 1

b) Use modified Euler's method to find y(0.1) when $\frac{dy}{dx} = x^2 + y$ and y(0) = 0.94c)Evaluate $\int_0^3 \frac{dx}{2x+3}$ by Simpson's rule, dividing into 10 equal parts

13. a) Find an approximate value of y when x = 0.2 using Runge-Kutta method of order four, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1

Solve

b)

$$\begin{split} &u_{xx}+u_{yy}=(x^2+y^2)e^{xy},\quad 0< x<1,\; 0< y<1,\;,\; u(0,y)=1,\; u(1,y)=e^y, 0\leq y\leq 1,\; u(x,0)=1,\; u(x,1)=e^x, 0\leq x\leq 1\;,\\ &\text{with}\; h=k=\frac{1}{3} \end{split}$$