FOURTH SEMESTER B.TECH DEGREE EXAMINATIONS (2013 Scheme)
 13.401 ENGINEERING MATHEMATICS III (S)
 MODEL QUESTION PAPER

Time: 3 Hours
Maximum Marks: 100

PART -A
 Answer all questions. Each question carries 4 marks

1. If u and v are harmonic functions, prove that $\left(u_{y}-v_{x}\right)+i\left(u_{x}+v_{y}\right)$ is analytic
2. Expand $\frac{1}{z^{2}}$ as Taylor series about $z=2$
3. Find the poles and residues of $\frac{1}{z \sin z}$
4. By means of Lagrange's formula prove that $y_{3}=0.05\left(y_{0}+y_{6}\right)-0.3\left(y_{1}+y_{5}\right)+0.75\left(y_{2}+y_{4}\right)$
5. Find the approximate value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by Trapezoidal rule

PART -B

Answer one full question from each module. Each question carries $\mathbf{2 0}$ marks

MODULE I

6. a) Show that $f(z)=\sqrt{|x y|}$ satisfies CR equations at $\mathrm{z}=0$ but not differentiable at $\mathrm{z}=0$
b) Find the analytic function $f(z)=u+i v$ if $\quad u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$
c) Under the transformation $w=1 / z$, find the image of $|z-2 i|=2$
7. a) If $f(z)$ is a function with continuous second order partial derivatives show that

$$
\frac{\partial^{x} f}{\partial x^{2}}+\frac{\partial^{x} f}{\partial y^{2}}=4 \frac{\partial^{2} f}{\partial z \partial \bar{z}}
$$

b) Discuss the transformation $w=\sin z$.
c) Find the bilinear mapping that maps $z=i_{y}-i, 1$ in to $w=0,1, \infty$ respectively

MODULE II

8. a) Find Laurent's series expansion about $z=0$ for $\frac{z^{2}-1}{z^{2}+5 a+6}$ in $2<|z|<3$
b) Using Cauchy's integral formula, evaluate $\int_{C} \frac{z}{(\mathrm{~g}-1)(\mathrm{z}-2]^{2}} d z$ where C is $|z-2|=\frac{1}{2}$
9. a) State Cauchy's Residue theorem and hence evaluate $\int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where C is $|z-i|=2$
b) Evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$

MODULE III

10. a) Solve $x^{3}-9 x+1=0$ for the root lying between 2 and 4 by Regula falsi method
b) Solve by Gauss -Seidel method

$$
10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14
$$

11. a) Find by Newton -Raphson method ,the real root of $\log _{\mathrm{e}} x-\cos x=0$.
b) The population of a certain town in India are as follows.

Year	$: 1921$	1931	1941	1951	1961	1971
Population(in lakhs)	$:$	12	15	20	27	39
52						

Estimate the population in the year 1925 and 1965 .

MODULE IV

12. a) Using Taylor series method, find y when $x=1.3$, given that $y^{\prime}=x^{2} y-1$ and $y-2$ when $x-1$
b) Use modified Euler's method to find $y(0.1)$ when $\frac{d y}{d x}=x^{2}+y$ and $y(0)=0.94$
c)Evaluate $\int_{0}^{3} \frac{d x}{2 x+3}$ by Simpson's rule,dividing into 10 equal parts
13. a) Find an approximate value of y when $x=0.2$ using Runge-Kutta method of order four, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$
b)

$$
u_{x x}+u_{y y}=\left(x^{2}+y^{2}\right) e^{x y}, \quad 0<x<1,0<y<1, u(0, y)=1, u(1, y)=
$$

$$
e^{y}, 0 \leq y \leq 1, u(x, 0)=1, u(x, 1)=e^{x}, 0 \leq x \leq 1
$$

$$
\text { with } h=k=\frac{1}{3}
$$

