08.807.1 Elective -V

GEOTECHNICAL EARTHQUAKE ENGINEERING

Time: 3 hrs

Marks: 100

PART A

Answer all questions. All questions carry equal marks

- I. a. Estimate total seismic energy released during an earthquake of Magnitude 7.
 - b. List the earthquake hazards related to geotechnical engineering.
 - c. Define Moment Magnitude of Earthquake.
 - d. Define Cyclic Stress Ratio (CSR) and number of equivalent uniform stress cycles.
 - e. Differentiate between low-strain and high strain tests used for the measurement of dynamic soil properties.
 - f. List five soil improvement methods for mitigation of Earthquake hazards.
 - g. Differentiate between seismic down-hole test and seismic up-hole test.
 - h. Define critical void ratio and state the use of critical void ratio line in liquefaction studies.

 $[8 \times 5 = 40]$

PART B

Answer any one question from each module

Module I

II. a. Describe continental Drift and Plate Tectonics. [10]
b. An earthquake causes an average of 2.5m strike-slip displacement over an 80 km long,
23km deep portion of a transform fault. Assuming the rock along the fault had average rupture strength of 175 kPa, estimate the seismic moment and moment magnitude of the earthquake. [10]
III. a. Describe the criterions by which liquefaction susceptibility can be judged. [10]
b. Differentiate between Flow Liquefaction and Cyclic Mobility. [10]

Module II

IV.	a. Describe seismic refraction test setup with principle and procedure for horizontal	
	layering.	[10]
	b. Describe Seismic Cross-hole test.	[10]
V.	a. State the advantages and limitations of shaking table test and centrifuge test.	[10]
	b. Define the terms: Maximum shear modulus, Shear modulus, Damping ratio, Modulus	
	reduction curve, Damping ratio curve.	[10]
	Module III	
VI.	a. Describe Seismic design considerations of foundations based on bearing capacity and	
	settlement.	[10]
	b. Explain anyone ground improvement method based on drained technique for mitigation	n of
	earthquake hazards.	[10]
VII.	a. Write in detail about Vibroflotation	[10]
	b. Write a short note about the estimation of earthquake induced settlement of dry sand.	[10]