Module III

- 10. a) Let h be a homomorphism h(a) = 01, h(b) = 0.
 - i) Find $h^{-1}(L_1)$, where $L_1 = (10+1)^*$
 - ii) Find $h(L_2)$, where $L_2 = (a+b)^*$
 - iii) Find $h^{-1}(L_3)$, where L_3 is the set of all strings of 0's and 1's with an equal number of 0's and 1's.
 - b) Find the Greibach normal form grammar equivalent to the following CFG:

$$S \rightarrow AA \mid 0$$
$$A \rightarrow SS \mid 1$$

- 11. a) Show that the following languages are not context free:
 - i) $\{a^{i}b^{j}c^{i}d^{j} | i, j \ge 1\}$
 - ii) $\{a^{i}b^{j}c^{k} | i < j < k\}$
 - b) Give a CFG for the language N(M) where M = ({q₀, q₁}, {0, 1}, {Z₀, X}, δ , q₀, Z₀, φ) and δ is given by δ (q₀, 1, Z₀) = {(q₀, XZ₀)}, δ (q₀, ε , Z₀) = {(q₀, ε)}, δ (q₀, 1, X) = {(q₀, XX)}, δ (q₁, 1, X) = {(q₁, ε)}, δ (q₀, 0, X) = {(q₁, X)}, δ (q₁, 0, Z₀) = {(q₀, Z₀)}

Module IV

- 12. a) Write notes on the following:
 - i) recursive and recursively enumerable languages
 - ii) Chruch's hypothesis
 - iii) decidable and undecidable problems
 - iv) Turing machine with multiple tracks
 - b) Design the Turing machine to recognize the following language: $\{0^n1^n0^n \mid n \ge 1\}$
- 13. a) Design a Turing machine to implement multiplication function.
 - b) Explain the variants of Turing machines.

 $(4 \times 20 = 80 \text{ marks})$