Continues.

Fourth Semester B.Tech Degree Examination April 2015 (2013 Scheme)

Branch: Electronics and Communication Engineering

13.405 CONTROL SYSTEM THEORY (A)

(Model Question Paper)

Time: 3Hrs

Max Marks: 100

PART-A

Answer all questions

1. Find the transfer function of a system described by differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = \frac{d^2y}{dt^2} + 5x$

2. Draw the force -current analogy of the system shown.

- 3. A unity feedback control system has the following open loop transfer function $G(s) = \frac{25}{s(s+10)}$. Find its natural frequency of oscillation.
- 4. Determine the poles and discuss the stability of the system with respect their position $T(s)=(s-2)/(s+4)(s^2+2)$
- The characteristic equation of a feedback control system is given by 5S⁴-2S³ +3S²+2S+16=0.
 Comment on its stability.
- The characteristic equation of a feedback control system is given by S⁴+20S³ +15S²+2S+K=0
 Determine the range of values of K for the system to be stable using Routh stability criterion.
- 7. Obtain the magnitude and phase plot for a system with open loop transfer function $G(s)H(s)=\frac{1}{(s+10)}$
- 8. Draw the root locus plot for a system with open loop transfer function $G(s)H(s) = \frac{1}{s^3}$
- Write the transfer function of a lead compensator and draw its pole zero plot.
- 10. A system is represented by the state vector differential equation x'=Ax+Bu where $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}.$ Find the roots of the system. (10 x 2 = 20 marks)

Matha: V